Single Shot Multibox Detection (SSD)实战(下)
Single Shot Multibox Detection (SSD)实战(下)
2. Training
将逐步解释如何训练SSD模型进行目标检测。
2.1. Data Reading and Initialization
创建的Pikachu数据集。
batch_size = 32
train_iter, _ = d2l.load_data_pikachu(batch_size)
Pikachu数据集中有1个类别。在定义模块之后,我们需要初始化模型参数并定义优化算法。
ctx, net = d2l.try_gpu(), TinySSD(num_classes=1)
net.initialize(init=init.Xavier(), ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': 0.2, 'wd': 5e-4})
2.2. Defining Loss and Evaluation Functions
目标检测有两种损失。一是锚箱类损失。为此,我们可以简单地重用我们在图像分类中使用的交叉熵损失函数。第二个损失是正锚箱偏移损失。偏移量预测是一个规范化问题。但是,在这里,我们没有使用前面介绍的平方损失。相反,我们使用L1范数损失,即预测值与地面真实值之差的绝对值。mask变量bbox_masks从损失计算中删除负锚定框和填充锚定框。最后,我们加入锚箱类别和补偿损失,以找到模型的最终损失函数。
cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
bbox_loss = gluon.loss.L1Loss()
def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
cls = cls_loss(cls_preds, cls_labels)
bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks)
return cls + bbox
我们可以用准确率来评价分类结果。当我们使用L1范数损失,我们将使用平均绝对误差来评估包围盒预测结果。
def cls_eval(cls_preds, cls_labels):
# Because the category prediction results are placed in the final
# dimension, argmax must specify this dimension
return float((cls_preds.argmax(axis=-1) == cls_labels).sum())
def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
return float((np.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

2.3. Training the Model
在模型训练过程中,我们必须在模型的正向计算过程中生成多尺度锚盒(anchors),并预测每个锚盒的类别(cls_preds)和偏移量(bbox_preds)。然后,我们根据标签信息Y标记每个锚定框的类别(cls_labels)和偏移量(bbox_labels)。最后,我们使用预测和标记的类别和偏移量值计算损失函数。为了简化代码,这里不计算训练数据集。
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['class error', 'bbox mae'])
for epoch in range(num_epochs):
# accuracy_sum, mae_sum, num_examples, num_labels
metric = d2l.Accumulator(4)
train_iter.reset() # Read data from the start.
for batch in train_iter:
timer.start()
X = batch.data[0].as_in_ctx(ctx)
Y = batch.label[0].as_in_ctx(ctx)
with autograd.record():
# Generate multiscale anchor boxes and predict the category and
# offset of each
anchors, cls_preds, bbox_preds = net(X)
# Label the category and offset of each anchor box
bbox_labels, bbox_masks, cls_labels = npx.multibox_target(
anchors, Y, cls_preds.transpose(0, 2, 1))
# Calculate the loss function using the predicted and labeled
# category and offset values
l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
bbox_masks)
l.backward()
trainer.step(batch_size)
metric.add(cls_eval(cls_preds, cls_labels), cls_labels.size,
bbox_eval(bbox_preds, bbox_labels, bbox_masks),
bbox_labels.size)
cls_err, bbox_mae = 1-metric[0]/metric[1], metric[2]/metric[3]
animator.add(epoch+1, (cls_err, bbox_mae))
print('class err %.2e, bbox mae %.2e' % (cls_err, bbox_mae))
print('%.1f examples/sec on %s' % (train_iter.num_image/timer.stop(), ctx))
class err 2.35e-03, bbox mae 2.68e-03
4315.5 examples/sec on gpu(0)

3. Prediction
在预测阶段,我们要检测图像中所有感兴趣的对象。下面,我们读取测试图像并转换其大小。然后,我们将其转换为卷积层所需的四维格式。
img = image.imread('../img/pikachu.jpg')
feature = image.imresize(img, 256, 256).astype('float32')
X = np.expand_dims(feature.transpose(2,
0, 1), axis=0)
利用MultiBoxDetection函数,我们根据锚定框及其预测的偏移量来预测边界框。然后,我们使用非最大值抑制来移除类似的边界框。
def predict(X):
anchors, cls_preds, bbox_preds =
net(X.as_in_ctx(ctx))
cls_probs = npx.softmax(cls_preds).transpose(0,
2, 1)
output = npx.multibox_detection(cls_probs,
bbox_preds, anchors)
idx = [i for i, row in
enumerate(output[0]) if row[0] != -1]
return output[0, idx]
output = predict(X)
最后,我们取置信度至少为0.3的所有边界框,并将它们显示为最终输出。
def display(img, output, threshold):
d2l.set_figsize((5, 5))
fig = d2l.plt.imshow(img.asnumpy())
for row in output:
score = float(row[1])
if score < threshold:
continue
h, w = img.shape[0:2]
bbox = [row[2:6] * np.array((w,
h, w, h), ctx=row.ctx)]
d2l.show_bboxes(fig.axes, bbox,
'%.2f' % score, 'w')
display(img, output, threshold=0.3)

4. Loss
Function
由于空间的限制,我们在本实验中忽略了SSD模型的一些实现细节。您能否在以下方面进一步改进该模型?
For the predicted offsets, replace L1L1 norm loss with L1L1 regularization loss. This
loss function uses a square function around zero for greater smoothness. This
is the regularized area controlled by the hyperparameter σσ:
When σσ is large, this loss is similar
to the L1L1 norm loss. When the value is
small, the loss function is smoother.
sigmas = [10, 1, 0.5]
lines = ['-', '--', '-.']
x = np.arange(-2, 2, 0.1)
d2l.set_figsize()
for l, s in zip(lines, sigmas):
y = npx.smooth_l1(x, scalar=s)
d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)
d2l.plt.legend


def focal_loss(gamma, x):
return -(1 - x) ** gamma * np.log(x)
x = np.arange(0.01, 1, 0.01)
for l, gamma in zip(lines, [0, 1, 5]):
y = d2l.plt.plot(x.asnumpy(), focal_loss(gamma, x).asnumpy(), l,
label='gamma=%.1f' % gamma)
d2l.plt.legend();

Training
and Prediction
When
an object is relatively large compared to the image, the model normally adopts
a larger input image size.
This generally produces a large
number of negative anchor boxes when labeling anchor box categories. We can
sample the negative anchor boxes to better balance the data categories. To do
this, we can set the MultiBoxTarget function’s negative_mining_ratio parameter.
Assign hyper-parameters with different weights to the
anchor box category loss and positive anchor box offset loss in the loss
function.
Refer to the SSD paper. What methods
can be used to evaluate the precision of object detection models?
5. Summary
- SSD is a multiscale object detection model. This model generates different
numbers of anchor boxes of different sizes based on the base network block
and each multiscale feature block and predicts the categories and offsets
of the anchor boxes to detect objects of different sizes. - During SSD model training, the loss function is calculated using the
predicted and labeled category and offset values.
Single Shot Multibox Detection (SSD)实战(下)的更多相关文章
- Single Shot Multibox Detection (SSD)实战(上)
Single Shot Multibox Detection (SSD)实战(上) 介绍了边界框.锚框.多尺度对象检测和数据集.现在,我们将利用这些背景知识构建一个目标检测模型:单次多盒检测(SSD) ...
- 论文笔记 SSD: Single Shot MultiBox Detector
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-st ...
- SSD: Single Shot MultiBox Detector
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexande ...
- 目标检测--SSD: Single Shot MultiBox Detector(2015)
SSD: Single Shot MultiBox Detector 作者: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, ...
- SSD(single shot multibox detector)算法及Caffe代码详解[转]
转自:AI之路 这篇博客主要介绍SSD算法,该算法是最近一年比较优秀的object detection算法,主要特点在于采用了特征融合. 论文:SSD single shot multibox det ...
- SSD(Single Shot MultiBox Detector)的安装配置和运行
下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Si ...
- SSD(single shot multibox detector)
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速 ...
- SSD: Single Shot MultiBox Detector 编译方法总结
SSD是一个基于单网络的目标检测框架,它是基于caffe实现的,所以下面的教程是基于已经编译好的caffe进行编译的. caffe的编译可以参考官网 caffe Installation Instal ...
- [论文理解]SSD:Single Shot MultiBox Detector
SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stag ...
随机推荐
- 病毒木马查杀实战第011篇:QQ盗号木马之专杀工具的编写
前言 由于我已经在<病毒木马查杀第004篇:熊猫烧香之专杀工具的编写>中编写了一个比较通用的专杀工具的框架,而这个框架对于本病毒来说,经过简单修改也是基本适用的,所以本文就不讨论那些重叠的 ...
- POJ 3301 三分(最小覆盖正方形)
题意: 给你n个点,让你找一个最小的正方形去覆盖所有点.思路: 想一下,如果题目中规定正方形必须和x轴平行,那么我们是不是直接找到最大的x差和最大的y差取最大就行了,但是这个题目 ...
- hdu2235 机器人的容器
题意: 机器人的容器 Time Limit: 3000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- Win64 驱动内核编程-4.内核里操作字符串
内核里操作字符串 字符串本质上就是一段内存,之所以和内存使用分开讲,是因为内核里的字符串太有花 样了,细数下来竟然有 4 种字符串!这四种字符串,分别是:CHAR*.WCHAR*.ANSI_STRIN ...
- Portswigger web security academy:Server-side template injection(SSTI)
Portswigger web security academy:Server-side template injection(SSTI) 目录 Portswigger web security ac ...
- Git解决中文乱码问题
git status 乱码 解决方法: git config --global core.quotepath false git commit 乱码 解决方法: git config --global ...
- 一文弄懂pytorch搭建网络流程+多分类评价指标
讲在前面,本来想通过一个简单的多层感知机实验一下不同的优化方法的,结果写着写着就先研究起评价指标来了,之前也写过一篇:https://www.cnblogs.com/xiximayou/p/13700 ...
- 手写一个最简单的IOC容器,从而了解spring的核心原理
从事开发工作多年,spring源码没有特意去看过.但是相关技术原理倒是背了不少,毕竟面试的那关还是得过啊! 正所谓面试造火箭,工作拧螺丝.下面实现一个最简单的ioc容器,供大家参考. 1.最终结果 2 ...
- JAVA的基本介绍和JDK的安装
JAVA帝国 JAVA特性和优势 简单 面向对象 可复制性 高性能 分布式 动态性 多线性 安全性 健壮性 JAVA三大版本 javaSE:标准版(桌面程序.控制台开发) javaME(嵌入式开发) ...
- tail -n 13 history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}'提取第2到第11列
# cat history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}' # tail -n 13 history 215 systemctl stop 216 ...