Single Shot Multibox Detection (SSD)实战(下)
Single Shot Multibox Detection (SSD)实战(下)
2. Training
将逐步解释如何训练SSD模型进行目标检测。
2.1. Data Reading and Initialization
创建的Pikachu数据集。
batch_size = 32
train_iter, _ = d2l.load_data_pikachu(batch_size)
Pikachu数据集中有1个类别。在定义模块之后,我们需要初始化模型参数并定义优化算法。
ctx, net = d2l.try_gpu(), TinySSD(num_classes=1)
net.initialize(init=init.Xavier(), ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': 0.2, 'wd': 5e-4})
2.2. Defining Loss and Evaluation Functions
目标检测有两种损失。一是锚箱类损失。为此,我们可以简单地重用我们在图像分类中使用的交叉熵损失函数。第二个损失是正锚箱偏移损失。偏移量预测是一个规范化问题。但是,在这里,我们没有使用前面介绍的平方损失。相反,我们使用L1范数损失,即预测值与地面真实值之差的绝对值。mask变量bbox_masks从损失计算中删除负锚定框和填充锚定框。最后,我们加入锚箱类别和补偿损失,以找到模型的最终损失函数。
cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
bbox_loss = gluon.loss.L1Loss()
def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
cls = cls_loss(cls_preds, cls_labels)
bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks)
return cls + bbox
我们可以用准确率来评价分类结果。当我们使用L1范数损失,我们将使用平均绝对误差来评估包围盒预测结果。
def cls_eval(cls_preds, cls_labels):
# Because the category prediction results are placed in the final
# dimension, argmax must specify this dimension
return float((cls_preds.argmax(axis=-1) == cls_labels).sum())
def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
return float((np.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())
2.3. Training the Model
在模型训练过程中,我们必须在模型的正向计算过程中生成多尺度锚盒(anchors),并预测每个锚盒的类别(cls_preds)和偏移量(bbox_preds)。然后,我们根据标签信息Y标记每个锚定框的类别(cls_labels)和偏移量(bbox_labels)。最后,我们使用预测和标记的类别和偏移量值计算损失函数。为了简化代码,这里不计算训练数据集。
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['class error', 'bbox mae'])
for epoch in range(num_epochs):
# accuracy_sum, mae_sum, num_examples, num_labels
metric = d2l.Accumulator(4)
train_iter.reset() # Read data from the start.
for batch in train_iter:
timer.start()
X = batch.data[0].as_in_ctx(ctx)
Y = batch.label[0].as_in_ctx(ctx)
with autograd.record():
# Generate multiscale anchor boxes and predict the category and
# offset of each
anchors, cls_preds, bbox_preds = net(X)
# Label the category and offset of each anchor box
bbox_labels, bbox_masks, cls_labels = npx.multibox_target(
anchors, Y, cls_preds.transpose(0, 2, 1))
# Calculate the loss function using the predicted and labeled
# category and offset values
l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
bbox_masks)
l.backward()
trainer.step(batch_size)
metric.add(cls_eval(cls_preds, cls_labels), cls_labels.size,
bbox_eval(bbox_preds, bbox_labels, bbox_masks),
bbox_labels.size)
cls_err, bbox_mae = 1-metric[0]/metric[1], metric[2]/metric[3]
animator.add(epoch+1, (cls_err, bbox_mae))
print('class err %.2e, bbox mae %.2e' % (cls_err, bbox_mae))
print('%.1f examples/sec on %s' % (train_iter.num_image/timer.stop(), ctx))
class err 2.35e-03, bbox mae 2.68e-03
4315.5 examples/sec on gpu(0)
3. Prediction
在预测阶段,我们要检测图像中所有感兴趣的对象。下面,我们读取测试图像并转换其大小。然后,我们将其转换为卷积层所需的四维格式。
img = image.imread('../img/pikachu.jpg')
feature = image.imresize(img, 256, 256).astype('float32')
X = np.expand_dims(feature.transpose(2,
0, 1), axis=0)
利用MultiBoxDetection函数,我们根据锚定框及其预测的偏移量来预测边界框。然后,我们使用非最大值抑制来移除类似的边界框。
def predict(X):
anchors, cls_preds, bbox_preds =
net(X.as_in_ctx(ctx))
cls_probs = npx.softmax(cls_preds).transpose(0,
2, 1)
output = npx.multibox_detection(cls_probs,
bbox_preds, anchors)
idx = [i for i, row in
enumerate(output[0]) if row[0] != -1]
return output[0, idx]
output = predict(X)
最后,我们取置信度至少为0.3的所有边界框,并将它们显示为最终输出。
def display(img, output, threshold):
d2l.set_figsize((5, 5))
fig = d2l.plt.imshow(img.asnumpy())
for row in output:
score = float(row[1])
if score < threshold:
continue
h, w = img.shape[0:2]
bbox = [row[2:6] * np.array((w,
h, w, h), ctx=row.ctx)]
d2l.show_bboxes(fig.axes, bbox,
'%.2f' % score, 'w')
display(img, output, threshold=0.3)
4. Loss
Function
由于空间的限制,我们在本实验中忽略了SSD模型的一些实现细节。您能否在以下方面进一步改进该模型?
For the predicted offsets, replace L1L1 norm loss with L1L1 regularization loss. This
loss function uses a square function around zero for greater smoothness. This
is the regularized area controlled by the hyperparameter σσ:
When σσ is large, this loss is similar
to the L1L1 norm loss. When the value is
small, the loss function is smoother.
sigmas = [10, 1, 0.5]
lines = ['-', '--', '-.']
x = np.arange(-2, 2, 0.1)
d2l.set_figsize()
for l, s in zip(lines, sigmas):
y = npx.smooth_l1(x, scalar=s)
d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)
d2l.plt.legend
def focal_loss(gamma, x):
return -(1 - x) ** gamma * np.log(x)
x = np.arange(0.01, 1, 0.01)
for l, gamma in zip(lines, [0, 1, 5]):
y = d2l.plt.plot(x.asnumpy(), focal_loss(gamma, x).asnumpy(), l,
label='gamma=%.1f' % gamma)
d2l.plt.legend();
Training
and Prediction
When
an object is relatively large compared to the image, the model normally adopts
a larger input image size.
This generally produces a large
number of negative anchor boxes when labeling anchor box categories. We can
sample the negative anchor boxes to better balance the data categories. To do
this, we can set the MultiBoxTarget function’s negative_mining_ratio parameter.
Assign hyper-parameters with different weights to the
anchor box category loss and positive anchor box offset loss in the loss
function.
Refer to the SSD paper. What methods
can be used to evaluate the precision of object detection models?
5. Summary
- SSD is a multiscale object detection model. This model generates different
numbers of anchor boxes of different sizes based on the base network block
and each multiscale feature block and predicts the categories and offsets
of the anchor boxes to detect objects of different sizes. - During SSD model training, the loss function is calculated using the
predicted and labeled category and offset values.
Single Shot Multibox Detection (SSD)实战(下)的更多相关文章
- Single Shot Multibox Detection (SSD)实战(上)
Single Shot Multibox Detection (SSD)实战(上) 介绍了边界框.锚框.多尺度对象检测和数据集.现在,我们将利用这些背景知识构建一个目标检测模型:单次多盒检测(SSD) ...
- 论文笔记 SSD: Single Shot MultiBox Detector
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-st ...
- SSD: Single Shot MultiBox Detector
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexande ...
- 目标检测--SSD: Single Shot MultiBox Detector(2015)
SSD: Single Shot MultiBox Detector 作者: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, ...
- SSD(single shot multibox detector)算法及Caffe代码详解[转]
转自:AI之路 这篇博客主要介绍SSD算法,该算法是最近一年比较优秀的object detection算法,主要特点在于采用了特征融合. 论文:SSD single shot multibox det ...
- SSD(Single Shot MultiBox Detector)的安装配置和运行
下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Si ...
- SSD(single shot multibox detector)
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速 ...
- SSD: Single Shot MultiBox Detector 编译方法总结
SSD是一个基于单网络的目标检测框架,它是基于caffe实现的,所以下面的教程是基于已经编译好的caffe进行编译的. caffe的编译可以参考官网 caffe Installation Instal ...
- [论文理解]SSD:Single Shot MultiBox Detector
SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stag ...
随机推荐
- kali 中文乱码解决
在命令行输入"dpkg-reconfigure locales".进入图形化界面之后,(空格是选择,Tab是切换,*是选中),选中en_US.UTF-8和zh_CN.UTF-8,确 ...
- Windows域的管理
目录 域的管理 默认容器 组织单位的管理 添加额外域控制器 卸载域控服务器 组策略应用 域的管理 域用户账户的管理 创建域用户账户 配置域用户账户属性 验证用户的身份 授权或拒绝对域资源的访问 组的管 ...
- Windows核心编程 第23章 结束处理程序
第2 3章 结束处理程序 SEH(结构化异常处理) 使用 S E H的好处就是当你编写程序时,只需要关注程序要完成的任务. 如果在运行时发生什么错误,系统会发现并将发生的问题通知你.利用S E H,你 ...
- 【python】Leetcode每日一题-矩阵置零
[python]Leetcode每日一题-矩阵置零 [题目描述] 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 .请使用 原地 算法. 进阶: 一个直观的解 ...
- 23.Quick QML-简单且好看的图片浏览器-支持多个图片浏览、缩放、旋转、滑轮切换图片
之前我们已经学习了Image.Layout布局.MouseArea.Button.GroupBox.FileDialog等控件. 所以本章综合之前的每章的知识点,来做一个图片浏览器,使用的Qt版本为Q ...
- 从执行上下文(ES3,ES5)的角度来理解"闭包"
目录 介绍执行上下文和执行上下文栈概念 执行上下文 执行上下文栈 伪代码模拟分析以下代码中执行上下文栈的行为 代码模拟实现栈的执行过程 通过ES3提出的老概念-理解执行上下文 1.变量对象和活动对象 ...
- Java初始化数据域的途径
Java调用构造器的具体处理步骤: 1.所有数据域被初始化为默认值(0,false或null); 2.按照在类声明中出现的次序,依次执行所有域的初始化语句和初始化块: 3.如果构造器第一行调用了第二个 ...
- Scrum Meeting 4
Basic Info where:共享空间 when:2021/4/29 target: 简要汇报一下已完成任务,下一步计划与遇到的问题 Progress Team Member Position A ...
- Mybatis-plus在原有的select查询语句中动态追加查询条件
一.适用场景 1.使用了xml形式的mapper.2.不想在select查询中大量使用<if>标签来判断条件是否存在而加入条件. 二.步骤 1.自定义wrapper继承QueryWrapp ...
- CentOS7 / CentOS8 设置终端屏幕分辨率
Centos7 修改文件 /boot/grub2/grub.cfg 搜索 linux16 / /vmlinuz-3.10.0-123.el7.x86_64 root=UUID=881ac4e6-4a5 ...