part 1 暴力

不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp:

$$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})jj+c_i*l)$$

这其中 f 代表在第 i 个点已经买了 j+l 个,其中当前第 i 个点买了 l 个,前 i-1 个点买了 j 个的最小价值。

这样的话可以水到 $90pts$,但是如果是联赛的话应该没有这么高的暴力分。

code

#include<bits/stdc++.h>
#define int long long
#define N 10005
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N];
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x<j.x;}
inline short main()
{ scanf("%lld%lld%lld",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%lld%lld%lld",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[1][0]=0;
sort(p+1,p+1+n,cmp);
p[n+1].x=E;p[n+1].f=K;
for(int i=1;i<=n+1;++i)sum[i]=sum[i-1]+p[i].f;
for(int i=2;i<=n+1;++i)
for(int j=0;j<=min(K,sum[i-1]);++j)
for(int l=0;l<=p[i-1].f;++l)
{ if(l+j>K)break;
dp[i][j+l]=min(dp[i][j+l],dp[i-1][j]+p[i-1].c*l+(j+l)*(j+l)*(p[i].x-p[i-1].x));
}
printf("%lld\n",dp[n+1][K]);
return 0;
}
}
signed main()
{return AYX::main();
}

part 2 单调队列优化 dp

对式子进行转换,我们能够得到:

$$f_{i,k}=\min(f_{i,j},f_{i-1,j}+(x_i-x_{i-1})jj-c_ij)+c_ik$$

这样 $c_i\times j$ 会变成一个常数,式子只和 i 和 j 有关。

采用单调队列使复杂度降到 $\mathcal O(Kn)$ 稳稳通过。

当然还可以用二进制优化背包来降复杂度,只不过不如单调队列快。

code

#include<bits/stdc++.h>
#define int long long
#define N 10005
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N],dui[N],head,tail;
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x<j.x;}
inline int calc(int i,int j)
{return dp[i-1][j]+(p[i].x-p[i-1].x)*j*j-j*p[i].c;}
inline short main()
{ scanf("%lld%lld%lld",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%lld%lld%lld",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[0][0]=0;
sort(p+1,p+1+n,cmp);
for(int i=1;i<=n;++i)
{ head=1;tail=0;
for(int j=0;j<=K;++j)
{ int val=calc(i,j);
while(head<=tail and calc(i,dui[tail])>val)tail--;
while(head<=tail and j-p[i].f>dui[head])++head;
dui[++tail]=j;
dp[i][j]=calc(i,dui[head])+p[i].c*j;
}
}
printf("%lld\n",dp[n][K]+(E-p[n].x)*K*K);
return 0;
}
}
signed main()
{return AYX::main();
}

[USACO10NOV]Buying Feed G的更多相关文章

  1. P4544 [USACO10NOV]Buying Feed G

    part 1 暴力 不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp: $$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})\time ...

  2. ACM BUYING FEED

    BUYING FEED 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 Farmer John needs to travel to town to pick up ...

  3. 2020: [Usaco2010 Jan]Buying Feed, II

    2020: [Usaco2010 Jan]Buying Feed, II Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 220  Solved: 162[ ...

  4. BUYING FEED

    Problem F: F BUYING FEED Description Farmer John needs to travel to town to pick up K (1 <= K < ...

  5. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

  6. USACO Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II 洛谷传送门 JDOJ 2671: USACO 2010 Jan Silver 2.Buying Feed, II ...

  7. 【P2616】 【USACO10JAN】购买饲料II Buying Feed, II

    P2616 [USACO10JAN]购买饲料II Buying Feed, II 题目描述 Farmer John needs to travel to town to pick up K (1 &l ...

  8. [USACO10NOV]购买饲料Buying Feed 单调队列优化DP

    题目描述 约翰开车来到镇上,他要带 KKK 吨饲料回家.运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X ...

  9. P4544 [USACO10NOV]购买饲料Buying Feed

    额,直接思路就dp吧.(我还想了想最短路之类的233但事实证明不行2333.....) 直入主题: 化简题意:在x轴上有n个点,坐标为xi.从原点出发,目标点为e,在途中需要收集K重量的物品,在每个点 ...

随机推荐

  1. Mooc中国大学Python学习笔记--数字类型及操作

    整数类型 只需知道整数无限制,pow(),4进制表示形式 与数学中整数的概念一致 --可正可负,没有取值范限制 --pow(x,y)函数:计算x^y,想算多大算多大 -十进制:10 -二进制,以0b或 ...

  2. JAVA中的策略模式strategy

    原文出自:http://ttitfly.iteye.com/blog/136467 1. 以一个算术运算为例,传统做法为: java 代码 package org.common; public cla ...

  3. JDK1.5新特性之注解

    时间:2017-1-2 20:14 --注解的概述    注释是给人看的,而注解是给程序(框架)看的.    在Servlet3.0中可以使用注解来替代配置文件,开发者就不用再写配置文件了,而是写注解 ...

  4. JAVA简单精确计算工具类

    1 public class ArithUtil { 2 3 // 默认除法运算精度 4 private static final int DEF_DIV_SCALE = 10; 5 6 privat ...

  5. Java 中 常用API概述之 Math, Object, String,StringBuffer类,Arrays,Integer类

    Math Math类包含执行基本数字运算的方法,如基本指数,对数,平方根和三角函数. 与StrictMath类的一些数字方法不同,Math类的StrictMath所有Math都没有定义为返回比特位相同 ...

  6. Ubuntu 16.04LTS下eclipse连接mysql

    第一部分:打开eclipse,新建一个web工程,新建一个类db_test.java(jdbc连接mysql的原理自行百度) import java.sql.*; public class db_te ...

  7. el-upload上传文件和表单一起提交+后端接收代码

    目录 一.前言 二.前端页面展示 三.表单代码 四.Data部分 五.JS方法 六.后端接收方式 七.总结 一.前言 我们在做前端时,会遇到这样的需求,上传Excel文件,并且还要和填写的表单数据,一 ...

  8. C++、Java、Python、Linux、Go、前端、算法,慕课资料分享

    C++.Java.Python.Linux.Go.前端.算法,慕课资料分享 微信公众号:大道同行JAVA 如有问题或建议,请后台留言,我会尽力解决你的问题. 前言 又见面了.废话不多说,最近多了一些在 ...

  9. Ubuntu 设置不更新某些软件

    方法来自:https://blog.csdn.net/zhrq95/article/details/79527073 保持某软件版本不变,如我wps-office,(已测有效@Ubuntu 16.04 ...

  10. 10个最酷的Linux单行命令

    下面是来自  Commandlinefu 网站由用户投票决出的 10 个最酷的 Linux 单行命令,希望对你有用. sudo !! 以 root 帐户执行上一条命令. python -m Simpl ...