正题

题目链接:https://www.luogu.com.cn/problem/P4640


题目大意

\(n\)种物品,其中\(t\)种物品是有个数限制的,第\(i\)种限制为\(b_i\),求选出\(m\)个物品的方案数\(\% p\)的值

\(1\leq n,m,b_i\leq 10^9,0\leq t\leq 15,p\in[1,10^5]\cap Pri\)


解题思路

看上去就很\(\text{OGF}\)的题目?

对于有限制的物品为\(f(x)=\frac{1-x^{b_i+1}}{1-x}\),其他都是\(f(x)=\frac{1}{1-x}\)。

然后\(n\)个乘起来的话然后求前\(m\)次项的系数。

分子因为只有\(t\)个有值,直接暴力乘起来。下面那个分母是\(\frac{1}{(1-x)^n}\)

所以对于上面如果有一个\(ax^{m-k}\)那么就会产生贡献

\[a\sum_{i=0}^{k}\binom{n+i-1}{n}=a\binom{n+k}{n}
\]

(相等于选出\(0\sim k\)个球放进\(n\)个盒子里,开一个垃圾箱把没用的球放进去就好了)

然后模数小,开\(Lucas\)就好了

时间复杂度\(O(2^t\log_p n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e5+10;
ll n,t,m,p,b[20],ans,inv[N],fac[N];
ll C(ll n,ll m)
{return fac[n]*inv[m]%p*inv[n-m]%p;}
ll L(ll n,ll m){
if(n<m)return 0;
if(n<p)return C(n,m);
return L(n/p,m/p)*L(n%p,m%p)%p;
}
signed main()
{
scanf("%lld%lld%lld%lld",&n,&t,&m,&p);
for(ll i=0;i<t;i++)scanf("%lld",&b[i]),b[i]++;
inv[1]=1;
for(ll i=2;i<p;i++)
inv[i]=p-inv[p%i]*(p/i)%p;
inv[0]=fac[0]=1;
for(ll i=1;i<p;i++)
fac[i]=fac[i-1]*i%p,inv[i]=inv[i-1]*inv[i]%p;
ll MS=(1<<t);
for(ll s=0;s<MS;s++){
ll f=1,sum=0;
for(ll i=0;i<t;i++)
if((s>>i)&1)f=-f,sum+=b[i];
(ans+=L(n+m-sum,n)*f)%=p;
}
printf("%lld\n",(ans+p)%p);
return 0;
}

P4640-[BJWC2008]王之财宝【OGF,Lucas定理】的更多相关文章

  1. Luogu4640 BJWC2008 王之财宝 容斥、Lucas

    传送门 题意:有$N$种物品,其中$T$个物品有限定数量$B_i$,其他则没有限定.问从中取出不超过$M$个物品的方案数,对质数$P$取模.$N,M \leq 10^9 , T \leq 15 , P ...

  2. [BJWC2008]王之财宝

    嘟嘟嘟 如果没有限制,而且必须选\(m\)件的话,就是隔板法\(C_{n + m - 1} ^ {m - 1}\)了.现在要选至多\(m\)件,那么就相当于新增一个板儿,分出的新的盒子表示" ...

  3. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  4. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  5. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  6. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  7. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  8. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

随机推荐

  1. 伪静态是什么?伪静态与普通html静态网页区别?

    什么是伪静态,伪静态作用伪静态即是网站本身是动态网页如.php..asp..aspx等格式动态网页有时这类动态网页还跟"?"加参数来读取数据库内不同资料.很典型的案例即是discu ...

  2. element ui loading加载开启与关闭

    参考:https://blog.csdn.net/qq_41877107/article/details/87690555 Vue项目引入element-ui,之后,将以下代码写入 mounted() ...

  3. C语言定义常量

     /* #define 标识符 #define day main中day=10;仅一次赋值*/        错误 #define 标识符 常量值 #define day 10;

  4. 模拟文件上传(二):使用apache fileupload组件进行文件上传

    其中涉及到的jar包: jsp显示层: <%@ page language="java" import="java.util.*" pageEncodin ...

  5. 目录-理解ASP.NET Core

    <理解ASP.NET Core>基于.NET5进行整理,旨在帮助大家能够对ASP.NET Core框架有一个清晰的认识. 目录 [01] Startup [02] Middleware [ ...

  6. C# .NetCore简单实现无限递归的功能

    1:在实际开发中,我们会经常使用到无限递归的情况,如菜单,父子级等的情况 2:Code 1 using System; 2 using System.Collections.Generic; 3 us ...

  7. TDSQL-A与CK的对比

    CK介绍 CK是目前社区里面比较热门的,应用场景也比较广泛. 首先,在架构上,集群内划分为多个分片,通过分片的线性扩展能力,支持海量数据的分布式存储计算,每个分片内包含一定数量的节点Node,即进程, ...

  8. idea控制台中文乱码解决办法

    也可以通过idea右下角的设置,但是properties文件是不能设置的,这个只能在file->setting->file encodings 设置

  9. Linux centos7 mysql 的安装配置

    2021-07-21 1. 创建用户 # 创建用户useradd mysql# 修改密码 passwd mysql 2. 下载 wget 网址 3. 解压 # 创建安装文件夹mkdir app# 解压 ...

  10. BUUCTF-[CISCN2019 华东北赛区]Web2

    BUUCTF-[CISCN2019 华东北赛区]Web2 看题 一个论坛,内容不错:) 可以投稿,点击投稿发现要注册,那就先注册登录.随便账号密码就行. 常规操作,扫一下站点,发现有admin.php ...