Loj#116-[模板]有源汇有上下界最大流
正题
题目链接:https://loj.ac/p/116
题目大意
\(n\)个点\(m\)条边的一张图,每条边有流量上下限制,求源点到汇点的最大流。
解题思路
先别急着求上面那个,考虑一下怎么求无源点汇点的上下界可行流。
可以考虑先把下限流满,这样就会出现有的点流量不均衡的问题,考虑每个点除了下限以外还有附加流量,这些附加流量会最多占能每条边\(r-l\)这么多的流量,可以先建立一张每条流量都是\(r-l\)的图。
定义一个点的\(d_i\)为该点的入度减去出度(流入的流量减去流出的流量),然后对于一个点如果它的\(d_i\)大于\(0\),那么它需要向其他点补充流量,建立一个超级源点\(S\)向它连边,流量为\(d_i\)。同理如果一个点的\(d_i\)小于\(0\)就连向超级汇点\(T\)。
这样就搞定了无源点汇点的上下界可行流问题了。
然后考虑有源汇点\(s,t\)怎么办,那么也就是\(t\)可以无限接受,\(s\)可以无限输送。那么如果\(t\)向\(s\)连一条\(inf\)的边,那么就可以保证\(s,t\)的功能又能保证流量守恒了。
之后直接和无源点汇点的一样做就好了。
然后要求最大流,先跑一次有没有可行的再考虑流量能够浮动的范围,此时我们需要在刚刚的残量网络上找从\(s\)到\(t\)的增广路来增大\(s\)到\(t\)的流量,那么删掉刚刚\(t->s\)的边然后跑\(s->t\)的最大流就好了。
最小流的话就是从\(t->s\)跑最大流
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=210,inf=1e9;
struct node{
int to,next,w;
}a[41000];
int n,m,tot,in[N],out[N],d[N];
int ls[N],cur[N],dep[N];
queue<int> q;
void addl(int x,int y,int w){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;
return;
}
bool bfs(int s,int t){
while(!q.empty())q.pop();q.push(s);
memset(dep,0,sizeof(dep));dep[s]=1;
for(int i=1;i<=t;i++)cur[i]=ls[i];
while(!q.empty()){
int x=q.front();q.pop();
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(dep[y]||!a[i].w)continue;
q.push(y);dep[y]=dep[x]+1;
if(y==t)return 1;
}
}
return 0;
}
int dinic(int x,int flow,int t){
if(x==t)return flow;
int rest=0,k;
for(int &i=cur[x];i;i=a[i].next){
int y=a[i].to;
if(dep[x]+1!=dep[y]||!a[i].w)continue;
rest+=(k=dinic(y,min(flow-rest,a[i].w),t));
a[i].w-=k;a[i^1].w+=k;
if(rest==flow)return rest;
}
if(!rest)dep[x]=0;
return rest;
}
int main()
{
int ans=0,sum=0,s,t,S,T;
scanf("%d%d%d%d",&n,&m,&S,&T);
s=n+1;t=s+1;tot=1;
for(int i=1;i<=m;i++){
int x,y,l,u;
scanf("%d%d%d%d",&x,&y,&l,&u);
addl(x,y,u-l);d[y]+=l;d[x]-=l;
}
for(int i=1;i<=n;i++)
if(d[i]>0)addl(s,i,d[i]),sum+=d[i];
else addl(i,t,-d[i]);
addl(T,S,inf);
while(bfs(s,t))
ans+=dinic(s,inf,t);
if(ans!=sum)
return puts("please go home to sleep");
ans=a[tot].w;a[tot].w=a[tot^1].w=0;
while(bfs(S,T))
ans+=dinic(S,inf,T);
printf("%d\n",ans);
}
Loj#116-[模板]有源汇有上下界最大流的更多相关文章
- LOJ.116.[模板]有源汇有上下界最大流(Dinic)
题目链接 http://blog.csdn.net/just_sort/article/details/75448403 有源汇有上下界网络流 通过添加一条(T->S,[0,INF])的边变成无 ...
- LOJ.117.[模板]有源汇有上下界最小流(Dinic)
题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...
- LOJ.115.[模板]无源汇有上下界可行流(Dinic)
题目链接 参考:http://blog.csdn.net/clove_unique/article/details/54884437 http://blog.csdn.net/wu_tongtong/ ...
- loj #116. 有源汇有上下界最大流
题目链接 有源汇有上下界最大流,->上下界网络流 注意细节,重置cur和dis数组时,有n+2个点 #include<cstdio> #include<algorithm> ...
- LibreOJ #116. 有源汇有上下界最大流
二次联通门 : LibreOJ #116. 有源汇有上下界最大流 /* LibreOJ #116. 有源汇有上下界最大流 板子题 我也就会写写板子题了.. 写个板子第一个点还死活过不去... 只能打个 ...
- 【模板】有源汇有上下界最大流(网络流)/ZOJ3229
先导知识 无源汇有上下界可行流 题目链接 https://vjudge.net/problem/ZOJ-3229 https://www.luogu.com.cn/problem/P5192 (有改动 ...
- loj #117. 有源汇有上下界最小流
题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...
- 【LOJ116】有源汇有上下界最大流(模板题)
点此看题面 大致题意: 给你每条边的流量上下界,让你先判断是否存在可行流.若存在,则输出最大流. 无源汇上下界可行流 在做此题之前,最好先去看看这道题目:[LOJ115]无源汇有上下界可行流. 大致思 ...
- 【Loj116】有源汇有上下界最大流(网络流)
[Loj116]有源汇有上下界最大流(网络流) 题面 Loj 题解 模板题. #include<iostream> #include<cstdio> #include<c ...
- LOJ116 - 有源汇有上下界最大流
原题链接 Description 模板题啦~ Code //有源汇有上下界最大流 #include <cstdio> #include <cstring> #include & ...
随机推荐
- 12-SpringCloud GateWay
GateWay和Zuul说明 Zuul开发人员窝里斗,实属明日黄花 重点关注Gate Way GateWay是什么 上一代zuul 1.x官网 Gateway官网 概述 Cloud全家桶中有个很重要的 ...
- Spring Cloud总结
restTemplate 消费者模块编写restTemplate配置类,即可在控制层调用提供者模块 // 配置类 @Configuration public class ApplicationCont ...
- ES6扩展运算符(三点运算符)...的用法
1. 第一个叫做 展开运算符(spread operator),作用是和字面意思一样,就是把东西展开.可以用在array和object上都行. let a = [1,2,3]; let b = [0, ...
- Microsoft Remote Desktop 通过 .rdp 文件登录
最近在淘宝上买了「市场洞察」子账号,说是子账号,其实是需要登录到他们的 Windows 服务器上才能用的.并且子账号也是 5-6 个人共用的,且不说远程服务器很老又有延迟,经常是我想添加一个监控店铺或 ...
- 假期作业03:使用IDE开发你的Java程序
假期作业03:使用IDE开发你的Java程序 一.使用Eclipse创建一个Java项目HelloWorldPrj,编写一个Java程序并运行. 首先要下载eclipse. (注意这里要选一个中国的, ...
- Java基础(四)——抽象类和接口
一.抽象类 1.介绍 使用关键字 abstract 定义抽象类. abstract定义抽象方法,只有声明,不用实现. 包含抽象方法的类必须定义为抽象类. 抽象类中可以有普通方法,也可以有抽象方法. 抽 ...
- docker日常使用指南
docker日常使用指南 目录 docker日常使用指南 前言 1.基础知识 1.1 docker是什么 1.2 与虚拟机(VM)的区别 1.3 镜像与容器 2.安装 2.1 在线安装 2.2 离线安 ...
- IKEv2协议协商流程: (IKE-SA-INIT 交换)第二包
IKEv2协议协商流程: (IKE-SA-INIT 交换)第二包 文章目录 IKEv2协议协商流程: (IKE-SA-INIT 交换)第二包 1. IKEv2 协商总体框架 2. 第二包流程图 3. ...
- Java-Bean Validation后端校验总结
Validation Information resource: SpringBoot Docs: 2.8.9. @ConfigurationProperties Validation url: ht ...
- CommonsBeanutils1 分析笔记
1.PropertyUtils.getProperty commons-beanutils-1.9.2.jar 包下的 PropertyUtils#getProperty方法相对于getXxx方法,取 ...