正题

题目链接:https://www.luogu.com.cn/problem/P4929


题目大意

\(n*m\)的矩形有\(0/1\),要求选出若干行使得每一列有且仅有一个\(1\)。


解题思路

精确覆盖问题指的是一个集合\(S\)和它的若干个子集集合\(T\),要求选出\(T\)的一个子集使得里面的集合元素刚好覆盖集合\(S\)。

\(DLX\)全称是\(dancing\ link\ X\),其中\(dancing\ link\)是指交叉十字循环双向链,\(X\)是指暴搜。

知道了这些,就可以去看洛谷题解了(


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=10100;
int n,m,cnt,l[N],r[N],u[N],d[N],h[N],row[N],col[N],s[N],ans[N];
void init(){
for(int i=0;i<=m;i++)
l[i]=i-1,r[i]=i+1,u[i]=d[i]=i;
l[0]=m;r[m]=0;cnt=m;
}
void link(int x,int y){
col[++cnt]=y;s[y]++;
d[cnt]=y;u[cnt]=u[y];
d[u[y]]=cnt;u[y]=cnt;
row[cnt]=x;
if(!h[x])h[x]=l[cnt]=r[cnt]=cnt;
else{
l[cnt]=l[h[x]];r[cnt]=h[x];
r[l[h[x]]]=cnt;l[h[x]]=cnt;
}
return;
}
void remove(int x){
r[l[x]]=r[x];l[r[x]]=l[x];
for(int i=d[x];i!=x;i=d[i])
for(int j=r[i];j!=i;j=r[j])
u[d[j]]=u[j],d[u[j]]=d[j],s[col[j]]--;
return;
}
void recover(int x){
for(int i=u[x];i!=x;i=u[i])
for(int j=l[i];j!=i;j=l[j])
u[d[j]]=d[u[j]]=j,s[col[j]]++;
r[l[x]]=l[r[x]]=x;
return;
}
bool dance(int dep){
if(r[0]==0){
for(int i=0;i<dep;i++)
printf("%d ",ans[i]);
return 1;
}
int c=r[0];
for(int i=c;i!=0;i=r[i])
if(s[i]<s[c])c=i;
remove(c);
for(int i=d[c];i!=c;i=d[i]){
ans[dep]=row[i];
for(int j=r[i];j!=i;j=r[j])remove(col[j]);
if(dance(dep+1))return 1;
for(int j=l[i];j!=i;j=l[j])recover(col[j]);
}
recover(c);
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
int x;scanf("%d",&x);
if(x)link(i,j);
}
if(!dance(0))
puts("No Solution!");
return 0;
}

P4929-[模板]舞蹈链(DLX)的更多相关文章

  1. 舞蹈链 DLX

    欢迎访问——该文出处-博客园-zhouzhendong 去博客园看该文章--传送门 舞蹈链是一个非常玄学的东西…… 问题模型 精确覆盖问题:在一个01矩阵中,是否可以选出一些行的集合,使得在这些行的集 ...

  2. luogu P4929 【模板】舞蹈链 DLX

    LINK:舞蹈链 具体复杂度我也不知道 但是 搜索速度极快. 原因大概是因为 每次检索的时间少 有一定的剪枝. 花了2h大概了解了这个东西 吐槽一下题解根本看不懂 只能理解大概的想法 核心的链表不太懂 ...

  3. [学习笔记] 舞蹈链(DLX)入门

    "在一个全集\(X\)中若干子集的集合为\(S\),精确覆盖(\(\boldsymbol{Exact~Cover}\))是指,\(S\)的子集\(S*\),满足\(X\)中的每一个元素在\( ...

  4. POJ3740 Easy Finding 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 精确覆盖问题模板题 算法 DLX算法 学习DLX算法--传送门 代码 #include <cstring> ...

  5. Vijos1755 靶形数独 Sudoku NOIP2009 提高组 T4 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求这个数独中所有的解法中的最大价值. 一个数独解法的价值之和为每个位置所填的数值 ...

  6. POJ3076 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的16*16数独,求解. 题解 DLX + 矩阵构建  (两个传送门) 学完这个之后,再 ...

  7. POJ3074 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求解. 题解 DLX + 矩阵构建  (两个传送门) 代码 #include & ...

  8. POJ2676 Sudoku 舞蹈链 DLX

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目(传送门) 题意概括 给出一个残缺的数独,求解.SPJ 题解 DLX + 矩阵构建  (两个传送门) 代码 #includ ...

  9. 关于用舞蹈链DLX算法求解数独的解析

    欢迎访问——该文出处-博客园-zhouzhendong 去博客园看该文章--传送门 描述 在做DLX算法题中,经常会做到数独类型的题目,那么,如何求解数独类型的题目?其实,学了数独的构建方法,那么DL ...

随机推荐

  1. JS获取对象在内存中计算后的样式

    通过obj.style的方式只能取得"内联style"的值,对于<style></style>中的css属性值,则无能为力 . 我们可以用obj.curre ...

  2. 【java web】过滤器filter

    一.过滤器简介 过滤器filter依赖于servlet容器 所谓过滤器顾名思义是用来过滤的,Java的过滤器能够为我们提供系统级别的过滤,也就是说,能过滤所有的web请求, 这一点,是拦截器无法做到的 ...

  3. WPF---依赖属性(一)

    一.概要 C#中属性是抽象模型的核心部分,而依赖属性是专门针对WPF的. 在WPF库实现中,依赖属性使用普通的C#属性进行了包装,使得我们可以通过和以前一样的方式来使用依赖属性. 依赖属性优点如下: ...

  4. qt 中的QlistWidget

  5. Js/jquery常用

    id属性不能有空格 1. js判断checkebox是否被选中 var ischecked = document.getElementById("xxx").checked  // ...

  6. ES6扩展——模板字符串

    ${ } 模板字符串占位符 需要用反引号` ` 1.模板字符串 `${变量}` const xiaoming = { name:'xiaoming', age:14, say1:function(){ ...

  7. UDP实现在线聊天功能

    发送端 //发送 public class UDPChat01 { public static void main(String[] args) throws Exception { //开启端口 D ...

  8. JS 根据id实现局部打印

    // 打印初审收费清单     getOrderCostBille(){       var head_str = "<html><head><title> ...

  9. Python习题集(八)

    每天一习题,提升Python不是问题!!有更简洁的写法请评论告知我! https://www.cnblogs.com/poloyy/category/1676599.html 题目 要求:判断数组元素 ...

  10. JS020. Array map()函数查到需要的元素时跳出遍历循环,不再执行到数组边界

    Array.prototype.map() map( )  方法创建一个 新数组 *,其结果是该数组中的每个元素是调用一次提供的 函数后的返回值 *.[ MDN / RUNOOB ] * map 添加 ...