[cf1444D]Rectangular Polyline
由于两种线段要交替出现,有解的必要条件即为$h=v$(以下均记为$n$)
进一步的,再假设两种线段依次对应于向量$(a_{i},0)$和$(0,b_{i})$,根据题意要求向量长度为给定值且和为0,那么也即有$|a_{i}|=l_{i},|b_{i}|=p_{i}$且$\sum_{i=1}^{n}a_{i}=\sum_{i=1}^{n}b_{i}=0$
使用背包判定是否存在这样的$a_{i}$和$b_{i}$,若不存在即无解,若存在则再求出任意一组
(可以证明此时一定有解,以下即为构造)
若$a_{i}$中的负数少于$b_{i}$则将两者全部取相反数,再将两者分别从大到小排序(其实只需要保证正数在负数前),最后将$(a_{i},b_{i})$作为一个整体极角排序,并依次选择$(a_{1},0),(0,b_{1}),(a_{2},0),...,(b_{n},0)$即可
(代码实现上通过将两边分别合理排序使得其已经极角排序)
不难发现,以此法最终方案一定是形如下图的形式,即合法
时间复杂度为$o(\frac{nC^{2}}{\omega})$,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 bitset<N*N>f[N];
5 int t,n,m,a[N],b[N];
6 int calc(int *a){
7 int m=0;
8 for(int i=1;i<=n;i++)m+=a[i];
9 if (m&1)return 0;
10 m>>=1;
11 for(int i=1;i<=n;i++)f[i]=((f[i-1])|(f[i-1]<<a[i]));
12 if (!f[n][m])return 0;
13 for(int i=n;i;i--)
14 if (!f[i-1][m]){
15 m-=a[i];
16 a[i]=-a[i];
17 }
18 return 1;
19 }
20 int main(){
21 f[0][0]=1;
22 scanf("%d",&t);
23 while (t--){
24 scanf("%d",&n);
25 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
26 scanf("%d",&m);
27 for(int i=1;i<=m;i++)scanf("%d",&b[i]);
28 if ((n!=m)||(!calc(a))||(!calc(b))){
29 printf("No\n");
30 continue;
31 }
32 int cnt=0;
33 for(int i=1;i<=n;i++)cnt+=(a[i]<0)-(b[i]<0);
34 if (cnt<0){
35 for(int i=1;i<=n;i++)a[i]=-a[i],b[i]=-b[i];
36 }
37 sort(a+1,a+n+1),reverse(a+1,a+n+1);
38 sort(b+1,b+n+1),reverse(b+1,b+n+1);
39 for(int i=1;i<=n+1;i++)
40 if ((i>n)||(a[i]<0)){
41 reverse(b+1,b+i);
42 break;
43 }
44 for(int i=n;i>=0;i--)
45 if ((!i)||(b[i]>0)){
46 reverse(a+i+1,a+n+1);
47 break;
48 }
49 printf("Yes\n");
50 for(int i=1,x=0,y=0;i<=n;i++){
51 x+=a[i],printf("%d %d\n",x,y);
52 y+=b[i],printf("%d %d\n",x,y);
53 }
54 }
55 return 0;
56 }
[cf1444D]Rectangular Polyline的更多相关文章
- CF1444D Rectangular Polyline[题解]
Rectangular Polyline 题目大意 给定 \(h\) 条长度分别为 \(l_1,l_2,--,l_h\) 的水平线段以及 \(v\) 条长度分别为 \(p_1,p_2,--.p_v\) ...
- [svg 翻译教程]Polyline(折线)polygon(多边形)
原文: http://tutorials.jenkov.com/svg/polygon-element.html Polyline 虽然说这个 元素我没用过,但是还是蛮强大的,也翻译下 示例 < ...
- [javascript svg fill stroke stroke-width points polygon属性讲解] svg fill stroke stroke-width points polygon绘制多边形属性并且演示polyline和polygon区别讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- [javascript svg fill stroke stroke-width points polyline 属性讲解] svg fill stroke stroke-width points polyline 绘制折线属性讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- svg学习(八)polyline
<polyline> 标签用来创建仅包含直线的形状. <?xml version="1.0" standalone="no"?> < ...
- point\polyline\polygon的转化(转)
首先你要明白Polyline是由path对象构成,Polygon是由ring对象构成,因此实现polyline向polygon的转换,思路如下:1.提取polyline中的所有path对象2.将pat ...
- ACdream 1429 Rectangular Polygon
Rectangular Polygon Time Limit: 1000MS Memory Limit: 256000KB 64bit IO Format: %lld & %llu D ...
- UVALive 3959 Rectangular Polygons (排序贪心)
Rectangular Polygons 题目链接: http://acm.hust.edu.cn/vjudge/contest/129733#problem/G Description In thi ...
- 一种将Region转为Polyline的方法
在AutoCAD.NET二次开发中,如果要将面域转为Polyline主要有以下几种方式: 1.使用Explode将面域炸成Line和Arc,然后再串起来,此方法可用于AutoCAD2007开始的所有版 ...
随机推荐
- scheduler源码分析——preempt抢占
前言 之前探讨scheduler的调度流程时,提及过preempt抢占机制,它发生在预选调度失败的时候,当时由于篇幅限制就没有展开细说. 回顾一下抢占流程的主要逻辑在DefaultPreemption ...
- 实现一个简单的侧边导航Winform程序框架
目录 简介 实现导航面板 实现方法 使用方法 实现标题栏 窗体拖拽及最大化 自定义窗体按钮 标题显示 按钮设置 实现状态栏 整体使用 参考文章 简介 每次新项目都要想着界面怎么设计好,但想来想去上位机 ...
- 从零入门 Serverless | 企业级 CI/CD 工具部署 Serverless 应用的落地实践
背景知识 通过以往几节课程的学习,相信大家对于 SAE 平台已经有了一定的了解.SAE 为客户免除了很多复杂的运维工作,开箱即用.按用量付费:与此同时 SAE 提供了丰富的 Open API,可以很容 ...
- Polya 定理 学习笔记
群 群的定义 我们定义,对于一个集合 \(G\) 以及二元运算 \(\times\),如果满足以下四种性质,那我们就称 \((G,\times)\) 为一个群. 1. 封闭性 对于 \(a\in G, ...
- dubbo注册中心占位符无法解析问题
dubbo注册中心占位符无法解析问题 1.背景 最近搞了2个老项目,想把他们融合到一起.这俩项目情况简介如下: 项目一:基于SpringMVC + dubbo,配置读取本地properties文件,少 ...
- Java中的函数式编程(三)lambda表达式
写在前面 lambda表达式是一个匿名函数.在Java 8中,它和函数式接口一起,共同构建了函数式编程的框架. lambda表达式乍看像是匿名内部类的一种语法糖,但实际上,它们是两种本质不同的事物 ...
- 初识HTML02
HTML 超文本标记语言 什么是超文本标记语言 浏览器能够解释和解析的语言 通过元素的形式构建页面结构和填充内容 构建HTML页面 构建页面的步骤 创建一个扩展名为.html和.html的页面文件 向 ...
- python streamlit 速成web页面,深度学习模型展示.
# 点我查看 参考文献 py中一个web应用,Streamlit 是一个开源 Python 库,可让您轻松创建和共享用于机器学习和数据科学的精美自定义 Web 应用程序.只需几分钟,您就可以构建和部 ...
- LeetCode:链表专题
链表专题 参考了力扣加加对与链表专题的讲解,刷了些 leetcode 题,在此做一些记录,不然没几天就没印象了 出处:力扣加加-链表专题 总结 leetcode 中对于链表的定义 // 定义方式1: ...
- MySQL:提高笔记-3
MySQL:提高笔记-3 学完基础的语法后,进一步对 MySQL 进行学习,前几篇为: MySQL:提高笔记-1 MySQL:提高笔记-2 MySQL:提高笔记-3,本文 说明:这是根据 bilibi ...