转载请注明出处:http://blog.csdn.net/u012860063?viewmode=contents

题目链接:http://codeforces.com/problemset/problem/445/B

----------------------------------------------------------------------------------------------------------------------------------------------------------
欢迎光临天资小屋http://user.qzone.qq.com/593830943/main

----------------------------------------------------------------------------------------------------------------------------------------------------------

DZY loves chemistry, and he enjoys mixing chemicals.

DZY has n chemicals, and m pairs of them will react.
He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order.

Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals
in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is.

Find the maximum possible danger after pouring all the chemicals one by one in optimal order.

Input

The first line contains two space-separated integers n and m .

Each of the next m lines contains two space-separated integers xi and yi (1 ≤ xi < yi ≤ n).
These integers mean that the chemical xi will
react with the chemical yi.
Each pair of chemicals will appear at most once in the input.

Consider all the chemicals numbered from 1 to n in some order.

Output

Print a single integer — the maximum possible danger.

Sample test(s)
input
1 0
output
1
input
2 1
1 2
output
2
input
3 2
1 2
2 3
output
4
Note

In the first sample, there's only one way to pour, and the danger won't increase.

In the second sample, no matter we pour the 1st chemical first, or pour the 2nd
chemical first, the answer is always 2.

In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).

代码例如以下:

#include <cstdio>
#include <cmath>
int father[1005];
int find(int x)
{
return x==father[x]?x:father[x]=find(father[x]);
}
void Union(int x,int y)
{
int f1=find(x);
int f2=find(y);
if(f1!=f2)
{
father[f2]=f1;
}
}
int main()
{
int n,m,a,b;
int i, j;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i = 1 ; i <=n ; i++ )
father[i] = i ;
if(m == 0)
{
printf("1\n");
continue;
}
int k=0;
for(i = 0 ; i < m ; i++ )
{
scanf("%d%d",&a,&b);
Union(a,b);
}
__int64 msum = 1;
for(i=1 ; i <= n ; i++)
if(father[i]==i)
k++;
int ans = n - k;
msum = pow(2,ans);
printf("%I64d\n",msum);
}
return 0 ;
}

CodeForces 445B. DZY Loves Chemistry(并查集)的更多相关文章

  1. CodeForces 445B DZY Loves Chemistry

    DZY Loves Chemistry Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64 ...

  2. CodeForces 445B DZY Loves Chemistry (并查集)

    题意: 有N种药剂编号 1 ~ N,然后有M种反应关系,这里有一个试管,开始时危险系数为 1,每当放入的药剂和瓶子里面的药剂发生反应时危险系数会乘以2,否则就不变,给出N个药剂和M种反应关系,求最大的 ...

  3. codeforces 445B. DZY Loves Chemistry 解题报告

    题目链接:http://codeforces.com/problemset/problem/445/B 题目意思:给出 n 种chemicals,当中有 m 对可以发生反应.我们用danger来评估这 ...

  4. UOJ_14_【UER #1】DZY Loves Graph_并查集

    UOJ_14_[UER #1]DZY Loves Graph_并查集 题面:http://uoj.ac/problem/14 考虑只有前两个操作怎么做. 每次删除一定是从后往前删,并且被删的边如果不是 ...

  5. CF 445B DZY Loves Chemistry(并查集)

    题目链接: 传送门 DZY Loves Chemistry time limit per test:1 second     memory limit per test:256 megabytes D ...

  6. CodeForces - 445B - DZY Loves Chemistry-转化问题

    传送门:http://codeforces.com/problemset/problem/445/B 参考:https://blog.csdn.net/littlewhite520/article/d ...

  7. UOJ14 DZY Loves Graph 并查集

    传送门 题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号).删除前$K$大边.撤销前一次操作,每一次操作后询问最小生成树边权和.$N \leq 3 \tim ...

  8. cf444E. DZY Loves Planting(并查集)

    题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...

  9. Codeforces Round #254 (Div. 2)B. DZY Loves Chemistry

    B. DZY Loves Chemistry time limit per test 1 second memory limit per test 256 megabytes input standa ...

随机推荐

  1. 有关于腾讯地图服务端IP定位接口的获取当前城市的处理

    接口说明:http://apis.map.qq.com/ws/location/v1/ip 说明里面写了ip可以缺省,然并卵,经过测试的到结果并不能获取到当前城市,理由是腾讯ip库的对应ip精度没有定 ...

  2. JS操作JSON常用方法

    一.JSON字符串的替换 工作经常遇到这样的字符串,如下: 需要经过替换后,才能从字符串转化成JSON对象.这里我们需要用JS实现replaceAll的功能, 将所有的 ' \\" ' 替换 ...

  3. C# AES加密解密

    完整代码: /****************************************************************** * 创建人:HTL * 创建时间:2015-04-1 ...

  4. simple-libfm-example-part1

    原文:https://thierrysilbermann.wordpress.com/2015/02/11/simple-libfm-example-part1/ I often get email ...

  5. OC 创建单例

    static BlockBackground *_sharedInstance = nil; + (BlockBackground*)sharedInstance { if (_sharedInsta ...

  6. 设置tableViewCell背景颜色

    1 2 3 4 5 6 7 8 9 10 11 12 13 //方法一: cell.contentView.backgroundColor = [UIColor redColor]; //方法二: U ...

  7. Hessian整合Spring

    含实例源码博客推荐:http://blog.csdn.net/julyness/article/details/49023581 简介: Hessian是一个简单的连接Web服务的二进制协议. 客户端 ...

  8. Spring -- 三种配置方式

    1.Explicit configuration in XML:显示的XML配置. 优点: 1)XML配置方式进一步降低了耦合,使得应用更加容易扩展,即使对配置文件进一步修改也不需要工程进行修改和重新 ...

  9. HTML的GET方法传递参数样式。

    #HTML的GET方法传递参数样式.http://127.0.0.1:8080/web1/urlinfo/getobject.html?UserId=1&UserName=ad

  10. gzip和zipfile模块

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #gzip和zipfile模块 #http://www.open-open.com/lib/view/open ...