prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.

A prime D is called a prime divisor of a positive integer P if there exists a positive integer K such that D * K = P. For example, 2 and 5 are prime divisors of 20.

You are given two positive integers N and M. The goal is to check whether the sets of prime divisors of integers N and M are exactly the same.

For example, given:

  • N = 15 and M = 75, the prime divisors are the same: {3, 5};
  • N = 10 and M = 30, the prime divisors aren't the same: {2, 5} is not equal to {2, 3, 5};
  • N = 9 and M = 5, the prime divisors aren't the same: {3} is not equal to {5}.

Write a function:

int solution(vector<int> &A, vector<int> &B);

that, given two non-empty zero-indexed arrays A and B of Z integers, returns the number of positions K for which the prime divisors of A[K] and B[K] are exactly the same.

For example, given:

    A[0] = 15   B[0] = 75
A[1] = 10 B[1] = 30
A[2] = 3 B[2] = 5

the function should return 1, because only one pair (15, 75) has the same set of prime divisors.

Assume that:

  • Z is an integer within the range [1..6,000];
  • each element of arrays A, B is an integer within the range [1..2,147,483,647].

Complexity:

  • expected worst-case time complexity is O(Z*log(max(A)+max(B))2);
  • expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).

判断两个数是否有相同的素数约数。首先求出公约数gcd_val,那么gcd_val里应该包含了common prime divisor,下面分别判断a跟b与gcd_val的公约数是不是有自己的非common prime divisor的prime divisor。

 // you can use includes, for example:
// #include <algorithm> // you can write to stdout for debugging purposes, e.g.
// cout << "this is a debug message" << endl;
int gcd(int a, int b) {
if (a < b) return gcd(b, a);
return b > ? gcd(b, a % b) : a;
} bool hasSamePrimeDivisors(int a, int b) {
int gcd_val = gcd(a, b);
int gcd_a, gcd_b;
while (a != ) {
gcd_a = gcd(a, gcd_val);
if (gcd_a == ) break;
a /= gcd_a;
}
if (a != ) return false;
while (b != ) {
gcd_b = gcd(b, gcd_val);
if (gcd_b == ) break;
b /= gcd_b;
}
return b == ;
} int solution(vector<int> &A, vector<int> &B) {
// write your code in C++11
int cnt = ;
for (int i = ; i < A.size() && i < B.size(); ++i) {
if (hasSamePrimeDivisors(A[i], B[i])) ++cnt;
}
return cnt;
}
 def gcd(x, y):
# Compute the greatest common divisor
if x%y == 0:
return y;
else:
return gcd(y, x%y) def hasSamePrimeDivisors(x, y):
gcd_value = gcd(x, y) # The gcd contains all
# the common prime divisors while x != 1:
x_gcd = gcd(x, gcd_value)
if x_gcd == 1:
# x does not contain any more
# common prime divisors
break
x /= x_gcd
if x != 1:
# If x and y have exactly the same common
# prime divisors, x must be composed by
# the prime divisors in gcd_value. So
# after previous loop, x must be one.
return False while y != 1:
y_gcd = gcd(y, gcd_value)
if y_gcd == 1:
# y does not contain any more
# common prime divisors
break
y /= y_gcd return y == 1 def solution(A, B):
count = 0
for x,y in zip(A,B):
if hasSamePrimeDivisors(x,y):
count += 1
return count

[Codility] CommonPrimeDivisors的更多相关文章

  1. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  2. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  3. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  4. *[codility]Peaks

    https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...

  5. *[codility]Country network

    https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...

  6. *[codility]AscendingPaths

    https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...

  7. *[codility]MaxDoubleSliceSum

    https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...

  8. *[codility]Fish

    https://codility.com/demo/take-sample-test/fish 一开始习惯性使用单调栈,后来发现一个普通栈就可以了. #include <stack> us ...

  9. *[codility]CartesianSequence

    https://codility.com/programmers/challenges/upsilon2012 求笛卡尔树的高度,可以用单调栈来做. 维持一个单调递减的栈,每次进栈的时候记录下它之后有 ...

随机推荐

  1. 基于Mongodb进行分布式数据存储

    http://blog.csdn.net/daizhj/article/details/5868360 注:本文是研究Mongodb分布式数据存储的副产品,通过本文的相关步骤可以将一个大表中的数据分布 ...

  2. C#.NET常见问题(FAQ)-想要另存一个项目,sln文件丢了怎么办,如何打开高版本的项目

    如下图所示,我想要另存一个工程,把 V4.4整个的项目另存为V4.5,我可以把解决方案文件(.sln)改名字,但是我没法把文件夹改名字,改了打开sln就说找不到.   很简单的一个思路是反正sln是多 ...

  3. C语言高速入门系列(二)

    C语言高速入门系列(二) -----转载请注明出处coder-pig 本节引言: 在前面一节中我们对C语言进行了初步的了解,学会了使用IDE进行代码的编写,编译执行! 在这一节中我们会对C语言的基本的 ...

  4. 深夜闲聊节目:华为 Mate7的指纹识别安全么?

    许久没有写过不论什么东西,近期非常忙并且还要准备找工作之类的,唉... ....今天的文章也不说技术,仅仅是闲聊. 一.手机指纹识别一揽 打开非常多站点.论坛的科技栏目,充斥着各种手机讯息!仿佛手机已 ...

  5. Eclipse Console 加大显示的行数和禁止错误弹出

    在 Preferences-〉Run/Debug-〉Console里边,去掉对Limit console output的选择,或者选择,设置一下buffer size的设定值 禁止弹出: Prefer ...

  6. HTTP报文01

    #xiaodeng #HTTP报文01 #HTTP权威指南 45 报文向下游流动- 不管是请求报文还是响应报文,所有报文都会向下游流动. 所有报文的发送者都在接收者的上游. 报文的组成部分 对报文进行 ...

  7. MySQL中分组取第一条, 以及删除多余的重复记录

    检查重复记录 -- 检查重复code1 select count(identity) num, identity from event_log where code='code1' order by ...

  8. PC端轻松控制Android手机,PC Control Andoroid,PC控制安卓手机

    记录此次经历的目的是帮助需要的人或下次使用时少走弯路,我为此试用了不少工具及方法,因为追求免费,像"Weak Control:在PC上控制你的Android手机"还要收费的我就不弄 ...

  9. 基于node.js的web框架express

    1.安装node.js方法: window :https://nodejs.org/en/ linux:http://www.runoob.com/nodejs/nodejs-install-setu ...

  10. Form_Form Builder中的全局变量和程式变量(概念)

    2014-12-20 Created By BaoXinjian