[BZOJ2683]简单题

题目大意:

一个\(n\times n(n\le5\times10^5)\)的矩阵,初始时每个格子里的数全为\(0\)。\(m(m\le2\times10^5)\)次操作,操作包含以下两种:

  1. 将某个格子加上一个数;
  2. 询问某个子矩阵的值。

思路:

CDQ分治+树状数组。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int M=8e5+1,C=2e5,N=5e5+1;
struct Query {
int type,t,id,x,y,v;
};
Query a[M];
int n,ans[C];
inline bool cmp1 (const Query &p1,const Query &p2) {
if(p1.t==p2.t) {
if(p1.x==p2.x) return p1.y<p2.y;
return p1.x<p2.x;
}
return p1.t<p2.t;
}
inline bool cmp2 (const Query &p1,const Query &p2) {
if(p1.x==p2.x) return p1.y<p2.y;
return p1.x<p2.x;
}
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void modify(int p,const int &x) {
for(;p<=n;p+=lowbit(p)) val[p]+=x;
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) ret+=val[p];
return ret;
}
};
FenwickTree t;
void cdq(const int &b,const int &e) {
if(b==e) return;
const int mid=(b+e)>>1;
cdq(b,mid);
cdq(mid+1,e);
int p=b,q=mid+1;
for(;q<=e;q++) {
if(a[q].type==1) continue;
for(;p<=mid&&a[p].x<=a[q].x;p++) {
if(a[p].type==1) t.modify(a[p].y,a[p].v);
}
ans[a[q].id]+=t.query(a[q].y)*a[q].v;
}
while(--p>=b) {
if(a[p].type==1) t.modify(a[p].y,-a[p].v);
}
std::inplace_merge(&a[b],&a[mid]+1,&a[e]+1,cmp2);
}
int main() {
n=getint();
int m=0,cnt=-1;
for(register int opt=getint(),i=0;opt!=3;opt=getint(),i++) {
if(opt==1) {
const int x=getint(),y=getint(),v=getint();
a[++m]=(Query){1,i,cnt,x,y,v};
}
if(opt==2) {
const int x1=getint(),y1=getint(),x2=getint(),y2=getint();
cnt++;
if(x1!=1&&y1!=1) a[++m]=(Query){2,i,cnt,x1-1,y1-1,1};
if(x1!=1) a[++m]=(Query){2,i,cnt,x1-1,y2,-1};
if(y1!=1) a[++m]=(Query){2,i,cnt,x2,y1-1,-1};
a[++m]=(Query){2,i,cnt,x2,y2,1};
}
}
std::sort(&a[1],&a[m]+1,cmp1);
cdq(1,m);
for(register int i=0;i<=cnt;i++) {
printf("%d\n",ans[i]);
}
return 0;
}

[BZOJ1176][BalkanOI2007]Mokia

改一下输入格式和数据范围,没什么区别。

[BZOJ2683]简单题/[BZOJ1176][BalkanOI2007]Mokia的更多相关文章

  1. Bzoj2683 简单题

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 1071  Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...

  2. bzoj2683简单题 cdq分治

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 1803  Solved: 731[Submit][Status][Discuss] ...

  3. bzoj2683简单题

    #include <iostream> #include <cstdio> #include <cmath> #include <algorithm> ...

  4. BZOJ2683: 简单题(cdq分治 树状数组)

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2142  Solved: 874[Submit][Status][Discuss] Descripti ...

  5. BZOJ2683 简单题(CDQ分治)

    传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...

  6. Bzoj2683 简单题 [CDQ分治]

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 1071  Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...

  7. 【对询问分块】【主席树】bzoj2683 简单题

    对操作序列分块,每S次暴力重建主席树. 当S=sqrt(n*log(n))时,复杂度为O(m*sqrt(n*log(n))). 在线的. #include<cstdio> #include ...

  8. cdq分治——bzoj2683简单题

    https://www.lydsy.com/JudgeOnline/problem.php?id=2683 知识点:1.以操作的顺序进行分治  2.cdq分治维护矩阵 3.计算比mid小的给比mid大 ...

  9. 【BZOJ1176】[Balkan2007]Mokia/【BZOJ2683】简单题 cdq分治

    [BZOJ1176][Balkan2007]Mokia Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=1600 ...

随机推荐

  1. 安卓微信、QQ自带浏览器 UXSS 漏洞

    安卓微信.QQ自带浏览器 UXSS 漏洞 注:PDF报告原文下载链接 Author: hei@knownsec.com Date: 2016-02-29 一.漏洞描述 在安卓平台上的微信及QQ自带浏览 ...

  2. Callable和futrue、ExecutorService的用法

    首先说明是为了解决什么问题? 为了解决主线程无谓等待浪费服务器资源的问题.当主线程执行一个费时的操作时,比如客户端发起一个请求,该请求在服务器端处理很复杂,如需要调用其他系统的接口,总之比较耗时.这时 ...

  3. Linux 多线程编程—使用条件变量实现循环打印

    编写一个程序,开启3个线程,这3个线程的ID分别为A.B.C,每个线程将自己的ID在屏幕上打印10遍,要求输出结果必须按ABC的顺序显示:如:ABCABC….依次递推. 使用条件变量来实现: #inc ...

  4. 003_Mac挂载NTFS移动硬盘读取VMware虚拟机文件

    一.Mac 挂载NTFS移动硬盘进行读写操作 (Read-only file system) 注意如下图所示先卸载,然后按照下图的命令进行挂载.然后cd /opt/003_vm/   &&am ...

  5. linux limits研究

    ---------------------------------------------------------------------------------------------------- ...

  6. python面向对象(三)之继承

    继承 介绍 继承是从已有的类中派生出新的类,新的类能吸收已有类的数据属性和行为,并能扩展新的能力.继承即常说的is-a关系.子类继承父类的特征和行为,使得子类具有父类的各种属性和方法.或子类从父类继承 ...

  7. Python模块制作

    在Python中,每个Python文件都可以作为一个模块,模块的名字就是文件的名字. 定义自己的模块 比如有这样一个文件test.py,在test.py中定义了函数add def add(a,b): ...

  8. 云计算IaaS浅谈

    (本篇文章仅仅是整理文档资料时,发现的一篇课程报告,感觉还挺有参考意义的) 最近几年云计算一直是IT业的热点,一股炽热的云计算浪潮席卷了世界,全世界都在讲云计算,都在搞云计算.虽然最初是由谷歌公司提出 ...

  9. Robust Mesh Watermarking

    之前看了一篇题为"Robust Mesh Watermarking"的论文,查阅资料的时候发现了一篇与之很相似的名为"三维模型数字水印系统的设计与实现"的中文论 ...

  10. 【读书笔记】Android的Ashmem机制学习

    Ashmem是安卓在linux基础上添加的驱动模块,就是说安卓有linux没有的功能. Ashmem模块在内核层面上实现,在运行时库和应用程序框架层提供了访问接口.在运行时库层提供的是C++接口,在应 ...