Chinese remainder theorem again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1299    Accepted Submission(s): 481

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)

x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
 
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
 
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
 
Sample Input
2 1
2 3
0 0
Sample Output
5
Author
lcy
 
Source
 
 /*

 由于题意:a<Mi<100 (i=1,2,…I )
所以 不要讨论为0到情况,
而且题目意思,没有说有不存在到情况,
所以也不需要去判断是否存在 */ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; __int64 m[]; __int64 Ex_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)//扩展欧几里得
{
if(b==)
{
x=;
y=;
return a;
}
__int64 g=Ex_gcd(b,a%b,x,y);
__int64 hxl=x-(a/b)*y;
x=y;
y=hxl;
return g;
} void make_ini(__int64 n,__int64 a)
{
__int64 i,x,y,m1,m2,r1,r2,t,c,d;
m1=m[];r1=m1-a;
for(i=;i<=n;i++)
{
m2=m[i];r2=m2-a; d=Ex_gcd(m1,m2,x,y);
c=r2-r1;
x=c/d*x;
t=m2/d;
x=(x%t +t)%t; r1=m1*x+r1;
m1=(m1*m2)/d;
}
printf("%I64d\n",r1);
} int main()
{
__int64 n,a,i;
while(scanf("%I64d%I64d",&n,&a)>)
{
if(n==&&a==)break;
for(i=;i<=n;i++)
scanf("%I64d",&m[i]);
make_ini(n,a);
}
return ;
}
 
 

DHU 1788 Chinese remainder theorem again 中国剩余定理的更多相关文章

  1. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  2. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  3. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  4. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

  5. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  6. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  7. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  8. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  9. poj1006中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Des ...

随机推荐

  1. jzoj5864

    本來這道題該100的,沒想到考試沒想最短路,直接跑暴力了 實際上這道題有原題跳樓機 那道題在模x的意義下統計答案 現在,我們要統計n個數的答案 30pts為提高組原題 剩下70pts,可以記dis[i ...

  2. MySQL查询语句练习题(面试时可能会遇到哦!)

    Sutdent表的定义 字段名 字段描述 数据类型 主键 外键 非空 唯一 自增 Id 学号 INT(10) 是 否 是 是 是 Name 姓名 VARCHAR(20) 否 否 是 否 否 Sex 性 ...

  3. mybatis3.4与spring3.2.5整合出现的问题

    错误信息: Exception in thread "main" java.lang.AbstractMethodError: org.mybatis.spring.transac ...

  4. hdoj1180 诡异的楼梯(bfs+奇偶判断)

    手癌!日常手癌!被自己气死! #include<iostream> #include<cstring> #include<queue> #include<al ...

  5. 程序猿的日常——Java基础之clone、序列化、字符串、数组

    其实Java还有很多其他的基础知识,在日常工作技术撕逼中也是经常被讨论的问题. 深克隆与浅克隆 在Java中创建对象有两种方式: 一种是new操作符,它创建了一个新的对象,并把对应的各个字段初始化成默 ...

  6. centos7启动顺序加密的问题

    在上一篇博客中我们说的是如何进入单用户模式,这篇我主要来讲centos7启动加密. 首先我们来说centos的启动顺序: 上一篇我们所说的进入单用户模式,就是在boot loader 这一层次下进入的 ...

  7. 小div在大div里面水平垂直都居中的实现方法

    关于如何设置小盒子在大盒子里面水平垂直方向同时居中的实现方法有很多种,下面仅列举了常用的几种. 首先看一下要实现的效果图及对应的html代码: <div class="parent&q ...

  8. 连接TFS,报TF31004错误码的一种解决方案

    最近研究GIT连接TFS.在用VS2013上使用GIT成功连接了TFS服务器. TFS同时包含GIT团队项目和常规团队项目 之后关机重启后,连接TFS团队项目时发生错误,报TF31004错误. 解决过 ...

  9. Git&GitHub学习日志

    Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很小到非常大的项目版本管理. Git是Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件.作为一个 ...

  10. 【java排序】冒泡排序、快速排序

    冒泡排序 冒泡排序是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地 进行直到没有再需要交换,也就是说该数列已经排序完成.这 ...