Closed Fences

A closed fence in the plane is a set of non-crossing, connected line segments with N corners (3 < N < 200). The corners or vertices are each distinct and are listed in counter-clockwise order in an array {xi, yi}, i in (1..N).

Every pair of adjacent vertices defines a side of the fence. Thus {xi yi xi+1 yi+1} is a side of the fence for all i in (1..N). For our purposes, N+1 = 1, so that the first and last vertices making the fence closed.

Here is a typical closed fence and a point x,y:

                         * x3,y3
x5,y5 / \
x,y * * / \
/ \ / \
/ * \
x6,y6* x4,y4 \
| \
| \
x1,y1*----------------* x2,y2

Write a program which will do the following:

  • Test an ordered list of vertices {xi,yi}, i in (1..N) to see if the array is a valid fence.
  • Find the set of fence sides that a person (with no height) who is standing in the plane at position (x,y) can "see" when looking at the fence. The location x,y may fall anywhere not on the fence.

A fence side can be seen if there exists a ray that connects (x,y) and any point on the side, and the ray does not intersect any other side of the fence. A side that is parallel to the line of sight is not considered visible. In the figure, above the segments x3,y3-x4,y4; x5,y5-x6,y6; and x6-y6-x1,y1 are visible or partially visible from x,y.

PROGRAM NAME: fence4

INPUT FORMAT

Line 1: N, the number of corners in the fence
Line 2: Two space-separated integers, x and y, that are the location of the observer. Both integers will fit into 16 bits.
Line 3-N+2: A pair of space-separated integers denoting the X,Y location of the corner. The pairs are given in counterclockwise order. Both integers are no larger than 1000 in magnitude.

NOTE: I have added a new test case #12 for this task. Let me know if you think it's wrong. Rob Be sure to include USACO in your mail subject!

SAMPLE INPUT (file fence4.in)

13
5 5
0 0
7 0
5 2
7 5
5 7
3 5
4 9
1 8
2 5
0 9
-2 7
0 3
-3 1

OUTPUT FORMAT

If the sequence is not a valid fence, the output is a single line containing the word "NOFENCE".

Otherwise, the output is a listing of visible fence segments, one per line, shown as four space-separated integers that represent the two corners. Express the points in the segment by showing first the point that is earlier in the input, then the point that is later. Sort the segments for output by examining the last point and showing first those points that are earlier in the input. Use the same rule on the first of the two points in case of ties.

SAMPLE OUTPUT (file fence4.out)

7
0 0 7 0
5 2 7 5
7 5 5 7
5 7 3 5
-2 7 0 3
0 0 -3 1
0 3 -3 1

——————————————————————题解

做的第三道计算几何

首先nofence的判定用两条线段是否相交【此处可能有图】

然后从观察者到一个点偏上一点点,偏下一点点,扫描看相交

然后求一个交点【此处可能有图】

判断交点是否在射线上

然后找一个距离观察者距离最小交点所在篱笆

 /*
LANG: C++
PROG: fence4
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define siji(i,x,y) for(int i=(x); i <= (y) ; ++i)
#define xiaosiji(i,x,y) for(int i=(x);i < (y); ++i)
#define ivorysi
#define eps 1e-8
#define o(x) ((x)*(x))
using namespace std;
typedef long long ll;
int n;
struct vec{
double x,y;
vec operator - (const vec &rhs)const{
return (vec){x-rhs.x,y-rhs.y};
}
vec operator + (const vec &rhs)const{
return (vec){x+rhs.x,y+rhs.y};
}
vec operator * (double d)const{
return (vec){x*d,y*d};
}
vec operator / (double d)const{
return (vec){x/d,y/d};
}
double norm() const{
return x*x+y*y;
}
}pt[],observer;
struct line {
vec s,t;
}seg[];
bool visible[];
int ans;
double cross(vec a,vec b) {//求叉积
return a.x*b.y-b.x*a.y;
}
vec intersect(line a,line b) {//求交点
double s1=cross(b.s-a.s,b.t-a.s),s2=cross(b.t-a.t,b.s-a.t);
return a.s+(a.t-a.s)*s1/(s1+s2);
}
inline bool dcmp(double a,double b=) {
return fabs( a - b ) <= eps;
} bool iscross(line a,line b) {
if(cross(a.t-a.s,b.s-a.s)*cross(a.t-a.s,b.t-a.s)>= ||
cross(b.t-b.s,a.s-b.s)*cross(b.t-b.s,a.t-b.s)>=) return false;
return true;
}
void init() {
scanf("%d",&n);
scanf("%lf%lf",&observer.x,&observer.y);
siji(i,,n) {
scanf("%lf%lf",&pt[i].x,&pt[i].y);
}
siji(i,,n-) {
seg[i].s=pt[i],seg[i].t=pt[i+];
}
seg[n-].s=pt[],seg[n-].t=pt[n];
seg[n].s=pt[n-],seg[n].t=pt[n];
siji(i,,n) {
siji(j,,n) {
if(i==j) continue;
if(!iscross(seg[i],seg[j])) continue;
puts("NOFENCE");
exit();
}
}
}
void checkline(line l) {
double shortest;
int num=-;
siji(i,,n) {
if(cross(seg[i].s-l.s,l.t-l.s)*cross(seg[i].t-l.s,l.t-l.s)>=) continue;//射线只需要判定一个点
vec temp=intersect(l,seg[i])-l.s;
if(temp.x*(l.t.x-l.s.x) < || temp.y*(l.t.y-l.s.y)<) continue;//假如交点和射线上的点相乘小于0说明是不同方向
if(num==-) {
num=i;shortest=temp.norm();
}
else if(shortest>temp.norm()){
shortest=temp.norm();
num=i;
}
}
if(num!=-) visible[num]=;
}
void solve() {
init();
line l;
l.s=observer;
siji(i,,n) {
double angle=atan2(pt[i].y-l.s.y,pt[i].x-l.s.x);
l.t=l.s+(vec){cos(angle+eps),sin(angle+eps)};//偏上一点点
checkline(l);
l.t=l.s+(vec){cos(angle-eps),sin(angle-eps)};//偏下一点点
checkline(l);
}
siji(i,,n) {
if(visible[i]) ++ans;
}
printf("%d\n",ans);
siji(i,,n) {
if(visible[i]) printf("%d %d %d %d\n",
(int)seg[i].s.x,(int)seg[i].s.y,(int)seg[i].t.x,(int)seg[i].t.y);
}
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("fence4.in","r",stdin);
freopen("fence4.out","w",stdout);
#else
freopen("f1.in","r",stdin);
//freopen("f1.out","w",stdout);
#endif
solve();
return ;
}

USACO 6.5 Closed Fences的更多相关文章

  1. USACO 6.4 Electric Fences

    Electric FencesKolstad & Schrijvers Farmer John has decided to construct electric fences. He has ...

  2. USACO6.5-Closed Fences:计算几何

    Closed Fences A closed fence in the plane is a set of non-crossing, connected line segments with N c ...

  3. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

  4. USACO 6.5 章节 世界上本没有龙 屠龙的人多了也便有了

    All Latin Squares 题目大意 n x n矩阵(n=2->7) 第一行1 2 3 4 5 ..N 每行每列,1-N各出现一次,求总方案数 题解 n最大为7 显然打表 写了个先数值后 ...

  5. USACO 3.3 Riding the Fences

    Riding the Fences Farmer John owns a large number of fences that must be repaired annually. He trave ...

  6. USACO Section 3.3: Riding the Fences

    典型的找欧拉路径的题.先贴下USACO上找欧拉路径的法子: Pick a starting node and recurse on that node. At each step: If the no ...

  7. 「USACO」「LuoguP2731」 骑马修栅栏 Riding the Fences(欧拉路径

    Description Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编 ...

  8. 【USACO 3.3】Riding The Fences(欧拉路径)

    题意: 给你每个fence连接的两个点的编号,输出编号序列的字典序最小的路径,满足每个fence必须走且最多走一次. 题解: 本题就是输出欧拉路径. 题目保证给出的图是一定存在欧拉路径,因此找到最小的 ...

  9. USACO Section 3.3 骑马修栅栏 Riding the Fences

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

随机推荐

  1. vue2.0实战记录

    1. 初始化项目vue init webpack caseone cd caseonecnpm installcnpm install less less-loader -Dcnpm install ...

  2. 科学计算三维可视化---TraitsUI(配置视图)

    配置视图 模态窗口: from traits.api import HasTraits,Int,Strclass ModelManager(HasTraits): model_name = Str c ...

  3. 洛谷P2424/codevs 2606 约数和

    http://codevs.cn/problem/2606/ https://luogu.lohu.info/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. ...

  4. 洛谷 p2066 机器分配(资源型)

    机器分配 https://www.luogu.org/problem/show?pid=2066 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定 ...

  5. PHP官方文档之————secure.php.net.while

    while 语句的含意很简单,它告诉 PHP 只要 while 表达式的值为 TRUE 就重复执行嵌套中的循环语句.表达式的值在每次开始循环时检查,所以即使这个值在循环语句中改变了,语句也不会停止执行 ...

  6. Redis学习十一:Redis的Java客户端Jedis

    一.安装JDK tar -zxvf jdk-7u67-linux-i586.tar.gz vi /etc/profile 重启一次Centos 编码验证 二.安装eclipse 三.Jedis所需要的 ...

  7. J - Clairewd’s message HDU - 4300(扩展kmp)

    题目链接:https://cn.vjudge.net/contest/276379#problem/J 感觉讲的很好的一篇博客:https://subetter.com/articles/extend ...

  8. Electron 开发环境下总是 crash

    全局安装一个 electron devtool 关掉 崩溃时选择重新打开

  9. pywin32记录备忘

    项目地址:http://sourceforge.net/projects/pywin32/ 文档地址:http://docs.activestate.com/activepython/2.7/pywi ...

  10. CentOS6.6中安装telnet

    一.查看本机是否安装telnet rpm -qa | grep telnet 如果什么都不显示.说明你没有安装telnet 二.开始安装 yum install xinetd yum install ...