Alternate Task UVA - 11728 (暴力。。分解质因子)
题意:
输入一个正整数S,(S <= 1000)求一个最大的正整数N,使得N的所有正因子之和为S。
解析:
。。求1000以内的所有数的正因子和 。。。输出。。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int sum[maxn]; void init()
{
for(int i= ; i<; i++)
{
for(int j=; j<=i; j++)
{
if(i % j) continue;
sum[i] += j;
}
}
} int main()
{
int n, kase = ;
init();
while(cin>> n && n)
{
int ok = ;
if(n == )
{
printf("Case %d: %d\n",++kase, );
continue;
}
for(int i=; i>=; i--)
{
if(sum[i] == n)
{
ok = ;
printf("Case %d: %d\n",++kase, i);
break;
}
} if(ok) printf("Case %d: %d\n",++kase, -);
}
return ;
}
Alternate Task UVA - 11728 (暴力。。分解质因子)的更多相关文章
- Minimum Sum LCM UVA - 10791(分解质因子)
对于一个数n 设它有两个不是互质的因子a和b 即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...
- POJ1142 Smith Numbers 暴力+分解质因子
题意:题目定义了一个史密斯数,这个数的定义是:一个合数的各个位置上加起来的和等于它的素因数所有位置上的数字加起来的和.比如: 4937775=3∗5∗5∗658374+9+3+7+7+7+5=3+5+ ...
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- NYOJ-476谁是英雄,分解质因子求约数个数!
谁是英雄 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 十个数学家(编号0-9)乘气球飞行在太平洋上空.当横越赤道时,他们决定庆祝一下这一壮举.于是他们开了一瓶香槟.不 ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- hdu6237 分解质因子
题意:给一堆石子,每次移动一颗到另一堆,要求最小次数使得,所有石子数gcd>1 题解:枚举所有质因子,然后找次数最小的那一个,统计次数时,我们可以事先记录下每堆石子余质因子 的和,对所有石子取余 ...
- Codeforces Round #828 (Div. 3) E2. Divisible Numbers (分解质因子,dfs判断x,y)
题目链接 题目大意 给定a,b,c,d四个数,其中a<c,b<c,现在让你寻找一对数(x,y),满足一下条件: 1. a<x<c,b<y<d 2. (x*y)%(a ...
- HDU 4135 Co-prime (容斥+分解质因子)
<题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...
- BNU 13259.Story of Tomisu Ghost 分解质因子
Story of Tomisu Ghost It is now 2150 AD and problem-setters are having a horrified time as the ghost ...
随机推荐
- react-native初体验(1) — hello world
没有简介,直接开始干活吧. 默认阅读本文的你已经安装好 nodejs, windows用户需要升级yarn到最新版本. 并且设置安装源为国内的淘宝源: npm config set registry ...
- Unity优化方向——优化Unity游戏中的图形渲染(译)
CPU bound:CPU性能边界,是指CPU计算时一直处于占用率很高的情况. GPU bound:GPU性能边界,同样的是指GPU计算时一直处于占用率很高的情况. 原文:https://unity3 ...
- Shuffle Bags让你的随机不那么随机
前言 当我最初写游戏时,我经常使用标准Random()函数,然后写一堆if和else条件来我获得预期结果.如果结果不太好,我会写更多的条件进行过滤或者筛选,直到我觉得游戏变得有趣.最近我发现有更好的方 ...
- 苏州地区--校招IT公司
完整经历了苏州的秋招和春招,在本校和苏州大学跑了许多次的宣讲会,自认为对苏州IT企业的校招有一个充分的认知.原本打算在苏州找一份Java开发的工作,可是发现自己简历连那些公司的简历关都过不去(对双非学 ...
- Spring AOP部分源码分析
Spring源码流程分析-AOP相关 根据Spring源码整理,其中Calculator为自定义的实现方法. AnnotationConfigApplicationContext()加载配置类的流程 ...
- Hyperledger Fabric 账本结构解析
前言 现在很多人都在从事区块链方面的研究,作者也一直在基于Hyperledger Fabric做一些开发工作.为了方便后来人更快的入门,本着“开源”的精神,在本文中向大家讲解一下Hyperledger ...
- 【Docker】第一篇 Docker的初始化安装部署
一.Docker基础 Dacker倡导的理念:一个容器一个进程 Docker的版本了解: Docker从1.13版本之后采用时间线的方式作为版本号,分为社区版CE和企业版EE. 社区版是免费提供给个人 ...
- 使用NNI的scikit-learn以及Tensorflow分析
一.NNI简介 NNI (Neural Network Intelligence) 是自动机器学习(AutoML)的工具包. 它通过多种调优的算法来搜索最好的神经网络结构和(或)超参,并支持单机.本地 ...
- python基础网络编程--转
python之网络编程 本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类: 消息传递(管道.FIFO.消息队列) 同步(互斥量.条件变量.读写锁.文件和写记录锁.信号量) 共享内存(匿名的 ...
- Kubernetes探索学习005--Kubernetes的Controller模型和ReplicaSet伸缩
1.Kubernetes的controller pattern 需要认识到Kubernetes操作Pod的逻辑,都是由控制器来完成的. 查看之前写过的nginx-deployment的YAML文件 [ ...