题意

给出一个\(n\)个点\(m\)条边的有向图\((n,m<=100000)\),从中选择\(k\)个点\((k<=n)\),问这k个点两两之间的最短路最小值是多少?

思路

直接的想法是对于每个点求一遍最短路,这样一共要跑n次最短路,时间复杂度\(O(nmlogm)\)。

考虑两个点集\(S1\)和\(S2\)之间的最短路,我们可以跑一次最短路求出来。

具体可以新建虚拟源点\(s\)和虚拟汇点\(t\),\(s\)和\(S1\)的每个点之间连一条零边,\(t\)同理。

那么这一次最短路就相当与求出了\(|S1|\times |S2|\)对关系之间的最短路最小值。

通过二进制分组,我们完全可以使复杂度优化到\(O(mlogmlogn)\)。

枚举顶点标号的二进制的每一位,如果这一位为\(1\),那么把这个点分到\(S1\),否则分到\(S2\)。

由于是有向边,还需要反过来求一遍。

代码

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-3
# define MOD 100000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
const int N=100005;
//Code begin... struct qnode{
int v;
LL c;
qnode(int _v=0, LL _c=0):v(_v),c(_c){}
bool operator <(const qnode &r)const{return c>r.c;}
};
struct Edge{int p, next, w;}edge[N<<1];
struct Node{int u, v, w;}node[N];
int head[N], cnt=1, id[N];
LL dist[N];
bool vis[N];
priority_queue<qnode>que;
const int P=16; void add_edge(int u, int v, int w){
edge[cnt].p=v; edge[cnt].next=head[u];
edge[cnt].w=w; head[u]=cnt++;
}
void init(){mem(head,0); cnt=1;}
void Dijkstra(int n, int start){
mem(vis,false); FOR(i,0,n) dist[i]=(LL)1<<60;
dist[start]=0; que.push(qnode(start,0));
qnode tmp;
while (!que.empty()) {
tmp=que.top(); que.pop();
int u=tmp.v;
if (vis[u]) continue;
vis[u]=true;
for (int i=head[u]; i; i=edge[i].next) {
int v=edge[i].p, cost=edge[i].w;
if (!vis[v]&&dist[v]>dist[u]+cost) {
dist[v]=dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
}
int main ()
{
int T, n, m, u, v, w, s, t, K;
scanf("%d",&T);
FOR(cas,1,T) {
LL ans=(LL)1<<60;
scanf("%d%d",&n,&m); s=0; t=n+1;
FOR(i,1,m) scanf("%d%d%d",&node[i].u,&node[i].v,&node[i].w);
scanf("%d",&K);
FOR(i,1,K) scanf("%d",id+i);
FOR(i,0,P) {
init();
FOR(j,1,m) add_edge(node[j].u,node[j].v,node[j].w);
FOR(j,1,K) {
if ((id[j]>>i)&1) add_edge(s,id[j],0);
else add_edge(id[j],t,0);
}
if (!head[s]) continue;
Dijkstra(t,s);
ans=min(ans,dist[t]);
}
FOR(i,0,P) {
init();
FOR(j,1,m) add_edge(node[j].u,node[j].v,node[j].w);
FOR(j,1,K) {
if ((id[j]>>i)&1) add_edge(id[j],t,0);
else add_edge(s,id[j],0);
}
if (!head[s]) continue;
Dijkstra(t,s);
ans=min(ans,dist[t]);
}
printf("Case #%d: %lld\n",cas,ans);
}
return 0;
}

HDU 6166 Senior Pan(二进制分组+最短路)的更多相关文章

  1. HDU 6166 Senior Pan 二进制分组 + 迪杰斯特拉算法

    Senior Pan Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Probl ...

  2. HDU 6166 Senior Pan(多校第九场 二进制分组最短路)

    题意:给出n个点和m条有向边(有向边!!!!我还以为是无向查了半天),然后给出K个点,问这k个点中最近的两点的距离 思路:比赛时以为有询问,就直接丢了,然后这题感觉思路很棒,加入把所有点分成起点和终点 ...

  3. HDU 6166.Senior Pan()-最短路(Dijkstra添加超源点、超汇点)+二进制划分集合 (2017 Multi-University Training Contest - Team 9 1006)

    学长好久之前讲的,本来好久好久之前就要写题解的,一直都没写,懒死_(:з」∠)_ Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memor ...

  4. HDU 6166 Senior Pan (最短路变形)

    题目链接 Problem Description Senior Pan fails in his discrete math exam again. So he asks Master ZKC to ...

  5. hdu 6166 Senior Pan

    http://acm.hdu.edu.cn/showproblem.php?pid=6166 题意: 给出一张无向图,给定k个特殊点 求这k个特殊点两两之间的最短路 二进制分组 枚举一位二进制位 这一 ...

  6. 2017多校第9场 HDU 6166 Senior Pan 堆优化Dij

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6166 题意:给你一个有向图,然后给你k个点,求其中一个点到另一个点的距离的最小值. 解法:枚举二进制位 ...

  7. HDU 6166 Senior Pan(k点中最小两点间距离)题解

    题意:n个点,m条有向边,指定k个点,问你其中最近的两点距离为多少 思路:这题的思路很巧妙,如果我们直接枚举两点做最短路那就要做C(k,2)次.但是我们换个思路,我们把k个点按照二进制每一位的0和1分 ...

  8. hdu 6169 Senior PanⅡ Miller_Rabin素数测试+容斥

    Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Pr ...

  9. 2017多校第9场 HDU 6169 Senior PanⅡ 数论,DP,爆搜

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6169 题意:给了区间L,R,求[L,R]区间所有满足其最小质数因子为k的数的和. 解法: 我看了这篇b ...

随机推荐

  1. [坑况]——webpack搭建前端环境踩过的坑啊

    前言 嘿哈,webpack搭建前端环境踩过的坑啊! 第一个:完全不知所措 webpack4 下面用不了HtmlWebpackPlugin 和 ExtractTextPlugin 解决方案: html- ...

  2. UWP Xaml设计器中输入特殊字符

    <TextBox Text="欢迎使用小冰科技最新研发的自然语言处理程序.小冰科技旗下还有强大的人脸识别软件——<微识别>,自动追踪和识别人脸:具有科普性质的.清新脱俗的识 ...

  3. Discuz x3.2利用阿里云cdn处理https访问亲测教程

    第一步配置cdn和https 1.首先去阿里云.腾讯云.七牛云等申请免费https证书 2.虚拟主机是不能直接支持https的,需要cdn处理后才可以,并且端口是80 3.开启cdn加速处理,(买一个 ...

  4. 传递JSON数据有没有必要用RequestBody?

    在使用SpringMVC的时候自己一直避免使用RequestBody,因为觉的它在参数处理的时候不够方便.理由如下:1.不使用RequestBody时是这样的:前端参数可以直接使用JSON对象: // ...

  5. Laya资源加载小记

    Laya.Loader负责资源的加载逻辑,被LoaderManager管理. Laya支持多种类型资源加载,也支持自定义类型加载.不同类型的加载方式可能不同. Laya.Loader缓存已经被加载过得 ...

  6. mysql innodb 从 ibd 文件恢复表数据

    最近内部的 mysql 数据库发生了一件奇怪的事,其中有一个表 users625 突然出现问题, 所有对它的操作都报错误 数据表不存在. mysql> select count(*) from ...

  7. AI入门课程资源

    企业 kaggle https://www.kaggle.com/learn/overview Google   介绍 https://developers.google.cn/machine-lea ...

  8. [zabbix] zabbix检测mysql主从状态

    环境说明: zabbix-proxy 172.16.2.95(zabbix-server同理) zabbix-agent111 172.16.2.111 mysql从机 1.mysql从机添加用户权限 ...

  9. HDFS handler

    http://docs.oracle.com/goldengate/bd1221/gg-bd/GADBD/GUID-85A82B2E-CD51-463A-8674-3D686C3C0EC0.htm#G ...

  10. 爱码室Crawler & classification module项目工作分配

    项目情况 爬虫项目是上届学生遗留下来的项目,他们已经实现了基础的功能,而我们来负责完善,主要需要解决的问题是怎么让爬虫脱离爬和停的繁琐指令,更加的智能化.所以我们的计划是在前人的源码基础上,加以修改测 ...