BZOJ3832: [Poi2014]Rally(拓扑排序 堆)
题意
Sol
最直观的思路是求出删除每个点后的最长路,我们考虑这玩意儿怎么求
设\(f[i]\)表示以\(i\)结尾的最长路长度,\(g[i]\)表示以\(i\)开始的最长路长度
根据DAG的性质,显然我们删除一个点后,整个集合会被分成两部分:拓扑序小于/大于当前点
那么此时的最长路一定可以通过计算连接着两个集合的边\((u, v)\)的\(f(u) + f(v) +1\)得到
这样的话我们可以直接维护边集,在统计每个点的答案的时候首先删掉入边的贡献统计答案,统计完后再加入出边的贡献
显然线段树可以维护,其实堆也可以维护,具体见代码(抄袭自yyb大佬)
#include<bits/stdc++.h>
#define chmax(x, y) (x = (x > y ? x : y))
#define chmin(x, y) (x = (x < y ? x : y))
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a1 = INF, a2;
class MyPriorityQueue {
public:
priority_queue<int> q1, q2;
void push(int x) {
q1.push(x);
}
int pop(int x) {
q2.push(x);
}
bool empty() {
while(!q2.empty() && (q1.top() == q2.top())) q1.pop(), q2.pop();
return q1.size() == 0;
}
int top() {
return empty() ? INF : q1.top();
}
};
MyPriorityQueue Q;
struct Graph {
vector<int> v[MAXN];
int f[MAXN], inder[MAXN], id[MAXN], tot;
Graph() {
tot = 0;
}
void AddEdge(int x, int y) {
v[x].push_back(y); inder[y]++;
}
void Topsort() {
queue<int> q;
for(int i = 1; i <= N; i++) if(!inder[i]) q.push(i);
while(!q.empty()) {
int p = q.front(); q.pop(); id[++tot] = p;
for(int i = 0; i < v[p].size(); i++) {
int to = v[p][i]; chmax(f[to], f[p] + 1);
if(!(--inder[to])) q.push(to);
}
}
}
};
Graph Gs, Gt;
int main() {
N = read(); M = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
Gs.AddEdge(x, y); Gt.AddEdge(y, x);
}
Gs.Topsort(); Gt.Topsort();
for(int i = 1; i <= N; i++) Q.push(Gt.f[i]);
for(int t = 1; t <= N; t++) {
int x = Gs.id[t]; Q.pop(Gt.f[x]);
for(int i = 0; i < Gt.v[x].size(); i++) {
int to = Gt.v[x][i];
Q.pop(Gs.f[to] + Gt.f[x] + 1);
}
int now = Q.top(); Q.push(Gs.f[x]);
if(now < a1) a1 = now, a2 = x;
for(int i = 0; i < Gs.v[x].size(); i++) {
int to = Gs.v[x][i];
Q.push(Gs.f[x] + Gt.f[to] + 1);
}
}
printf("%d %d\n", a2, a1);
return 0;
}
BZOJ3832: [Poi2014]Rally(拓扑排序 堆)的更多相关文章
- 【bzoj4010】[HNOI2015]菜肴制作 拓扑排序+堆
题目描述 给你一张有向图,问:编号-位置序(即每个编号的位置对应的序列)最小(例如1优先出现在前面,1位置相同的2优先出现在前面,以此类推)的拓扑序是什么? 输入 第一行是一个正整数D,表示数据组数. ...
- BZOJ3832[Poi2014]Rally——权值线段树+拓扑排序
题目描述 An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long di ...
- 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)
3832: [Poi2014]Rally Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 168 Solved: ...
- [AGC010E] Rearranging [拓扑排序+堆]
题面 传送门 思路 首先,一个显然的结论是:Alice调整过后的序列中任意两个不互质的数的相对顺序无法改变 那么我们可以以这个性质为突破口 我们在两个不互质的权值的点之间连一条边(没错这是个图论题!! ...
- BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】
题目链接 BZOJ3832 题解 神思路orz,根本不会做 设\(f[i]\)为到\(i\)的最长路,\(g[i]\)为\(i\)出发的最长路,二者可以拓扑序后\(dp\)求得 那么一条边\((u,v ...
- BZOJ4010[HNOI2015]菜肴制作——拓扑排序+堆
题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予 1到N的顺序编号,预估质量最高的菜肴编号为1.由于菜肴 ...
- 并不对劲的bzoj3832: [Poi2014]Rally
传送门-> 这题的原理看上去很神奇. 称拓扑图中入度为0的点为“起点”,出度为0的点为“终点”. 因为“起点”和“终点”可能有很多个,算起来会很麻烦,所以新建“超级起点”S,向所有点连边,“超级 ...
- BZOJ3832 : [Poi2014]Rally
f[0][i]为i出发的最长路,f[1][i]为到i的最长路 新建源汇S,T,S向每个点连边,每个点向T连边 将所有点划分为两个集合S与T,一开始S中只有S,其它点都在T中 用一棵线段树维护所有连接属 ...
- bzoj 2535: [Noi2010]Plane 航空管制2【拓扑排序+堆】
有个容易混的概念就是第一问的答案不是k[i]字典序最小即可,是要求k[i]大的尽量靠后,因为这里前面选的时候是对后面有影响的(比如两条链a->b c->d,ka=4,kb=2,kc=3,k ...
随机推荐
- 使用泛型SwingWorker与EDT事件分发线程保持通讯
为什么要使用SwingWorker 在swing开发中,如果一个应用程序,执行一些任务,需要大量的时间来完成,比如下载一个大文件或执行一个复杂的数据库查询. 我们假设这些任务是由用户使用一个按钮触发的 ...
- iOS-构建自己的代码块【提高编码效率-Xcode代码块】
前言 2018年3月1日 农历正月十四 星期四 不知怎么地,一大早上班就想写博客: Xcode代码块 开发中,都不想写过多代码,然后就会用这种方法,去简化代码,包括MVVM框架,它也体现出来了去简化C ...
- jquery ajax在跨域访问post请求的时候,包括ie9以下的浏览器无效,其他浏览器正常
最近做的一个项目,原先没有要求兼容IE9以下,所以在写代码的时候也没有打开IE9以下去测试,这两天要去做IE9以下的兼容,在IE9以下打开本地的项目发现数据请求不成功,而通过发布道服务器上的链接打开是 ...
- 希尔排序的理解和实现(Java)
希尔排序原理 希尔排序(shell sort)这个排序方法又称为缩小增量排序,是1959年D·L·Shell提出来的. 该方法的基本思想是:设待排序元素序列有n个元素,首先取一个整数increment ...
- 笛卡尔积算法的sku
1.笛卡尔积在形式上比较容易理解,但作为按钮操作DOM的时候,我的思路大体还可以,有些偏差.看到这种矩行方阵,首先联想到二维数组,事实上这种方法完全可以实现,但是在性能和编码速度上都有弊端. 2.以下 ...
- kubernetes ingress到pod的数据流
假设现在有一个ingress暴露的服务 example.com.cn,查看一下流量是怎么传输到后端的 使用kubectl get ingress可以查看到如下内容,example.com.cn对应的i ...
- apache的rewrite规则来实现URL末尾是否带斜杠
1.url: http://www.test.com/user/ 跟:http://www.test.com/user 这两个URL对于用户来说应该是一样的,但从编程的角度来说,它们可以不相同 但我们 ...
- php通过生成动态变量(变量名中还有变量)
借鉴:http://blog.sina.com.cn/s/blog_7193eeac0100zwld.html 如果想for循环生成变量 如: $a1,$a2,$a3.... $name = &quo ...
- elasticsearch分析系列
http://www.opscoder.info/category/ElasticSearch/?page=2 https://www.jianshu.com/p/0908b9ee65fc https ...
- ruby文件操作
Ruby代码 1.#读文件 2.f = File.open("myfile.txt", "r") 3.f.each_line do|line| 4.puts & ...