图的度数分布

import collections
import matplotlib.pyplot as plt
import networkx as nx G = nx.gnp_random_graph(100, 0.02) degree_sequence = sorted([d for n, d in G.degree()], reverse=True) # degree sequence
# print "Degree sequence", degree_sequence
degreeCount = collections.Counter(degree_sequence)
deg, cnt = zip(*degreeCount.items()) # #as an alternation, you can pick out the top N items for the plot:
#d = sorted(degreeCount.items(), key=lambda item:item[1], reverse=True)[:30] # pick out the up 30 items from counter
#deg = [i[0] for i in d]
#cnt = [i[1] for i in d] fig, ax = plt.subplots()
plt.bar(deg, cnt, width=0.80, color='b') plt.title("Degree Histogram")
plt.ylabel("Count")
plt.xlabel("Degree")
ax.set_xticks([d + 0.4 for d in deg])
ax.set_xticklabels(deg) # draw graph in inset
plt.axes([0.4, 0.4, 0.5, 0.5])
Gcc = sorted(nx.connected_component_subgraphs(G), key=len, reverse=True)[0]
pos = nx.spring_layout(G)
plt.axis('off')
nx.draw_networkx_nodes(G, pos, node_size=20)
nx.draw_networkx_edges(G, pos, alpha=0.4) plt.draw()

Source for reference:

degree-histogram, networkx

Draw the histogram for values of dict

import collections
import matplotlib.pyplot as plt dict_granuLevel = {'1283': 9, '291': 5, '451': 6, '964': 8, '1093': 5, '525': 8, '878': 11, '1553': 9, '1107': 6, '1588': 8,
'1435': 6, '861': 8, '1054': 9} value_sequence = sorted([d for d in dict_granuLevel.values()], reverse=True) # value sequence
print("value sequence:", value_sequence)
valueCount = collections.Counter(value_sequence)
val, cnt = zip(*valueCount.items()) # # as an alternation, you can pick out the top N items for the plot:
# d = sorted(degreeCount.items(), key=lambda item:item[1], reverse=True)[:10] # pick out the up 10 items from counter
# val = [i[0] for i in d]
# cnt = [i[1] for i in d] fig, ax = plt.subplots()
plt.bar(val, cnt, width=0.80, color='b') plt.title("value Histogram")
plt.ylabel("Count")
plt.xlabel("value")
ax.set_xticks([d + 0.4 for d in val])
ax.set_xticklabels(val) plt.show()

The function style:

import collections
import matplotlib.pyplot as plt def plot_histogram(list_input, k=0):
'''
draw the histogram for items in list_input
:param list: list of count_numbers. all items are required to be int.
:param k: the top k-th count of items to be considered for drawing the plot. default: k=0, plot all
:return:
'''
valueCount = collections.Counter(list_input)
val, cnt = zip(*valueCount.items())
print(' len of val, cnt:', len(val), end='')
if k != 0:
print(' pick the largest', k, 'cnt for histogram.')
d = sorted(valueCount.items(), key=lambda item: item[1], reverse=True)[:k] # pick out the up k items from counter
else:
d = sorted(valueCount.items(), key=lambda item: item[1], reverse=True)
print(' k = 0. Pick all the cnt for histogram.') val = [i[0] for i in d]
cnt = [i[1] for i in d] fig, ax = plt.subplots()
plt.bar(val, cnt, width=0.80, color='b')
plt.title("value Histogram")
plt.ylabel("Count")
plt.xlabel("value")
ax.set_xticks([d + 0.4 for d in val])
ax.set_xticklabels(val)
plt.show() return dict_granuLevel = {'tom': 9, 'cat': 5, 'dot': 6, 'dog': 8, 'hors': 5, 'fao': 8, 'pao': 11, 'koo': 9, 'jan': 6, 'dec': 8,
'foo': 6, 'doo': 8, 'coo': 9} value_sequence = sorted([d for d in dict_granuLevel.values()], reverse=True) # value sequence
print("value sequence:", value_sequence) plot_histogram(value_sequence, 3)

read more: 用python + networkx探索和分析网络数据

python绘制图的度分布柱状图, draw graph degree histogram with Python的更多相关文章

  1. 用Python 绘制分布(折线)图

    用Python 绘制分布(折线)图,使用的是 plot()函数. 一个简单的例子: # encoding=utf-8 import matplotlib.pyplot as plt from pyla ...

  2. Python绘制六种可视化图表详解,三维图最炫酷!你觉得呢?

    Python绘制六种可视化图表详解,三维图最炫酷!你觉得呢? 可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的.对于初学者来说,很容易被这官网上 ...

  3. python 绘制柱状图

    python 绘制柱状图 import matplotlib.pyplot as plt import numpy as np # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英 ...

  4. 使用python绘制根轨迹图

    最近在学自动控制原理,发现根轨迹这一张全是绘图的,然而书上教的全是使用matlab进行计算机辅助绘图.但国内对于使用python进行这种绘图的资料基本没有,后来发现python-control包已经将 ...

  5. Python的可视化包 – Matplotlib 2D图表(点图和线图,.柱状或饼状类型的图),3D图表(曲面图,散点图和柱状图)

    Python的可视化包 – Matplotlib Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表.Matplotlib最早是为了可 ...

  6. Python绘制语谱图+时域波形

    """Python绘制语谱图""" """Python绘制时域波形""" # 导 ...

  7. Python 绘制 柱状图

    用Python 绘制 柱状图,使用的是bar()函数. 一个简单的例子: # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英寸 plt.figure(figsize=(10, 1 ...

  8. Python绘制面积图

    一.Python绘制面积图对应代码如下图所示 import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans ...

  9. Python绘制折线图

    一.Python绘制折线图 1.1.Python绘制折线图对应代码如下图所示 import matplotlib.pyplot as pltimport numpy as np from pylab ...

随机推荐

  1. Exchanger 源码分析

    Exchanger 此类提供对外的操作是同步的: 用于成对出现的线程之间交换数据[主场景]: 可以视作双向的同步队列: 可应用于基因算法.流水线设计.数据校对等场景 创建实例 /** * arena ...

  2. linux文本图形界面转换

    vim /etc/inittab 3为默认进入文本界面, 5为默认进入图形界面 文本界面下输入init5或者startx切换图形化界面  图形化界面下输入init3切换文本界面

  3. Delphi XE2 之 FireMonkey 入门(17) - 特效

    刚打开 XE2 时, 就从 Tool Palette 窗口的 Effects 组中发现洋洋洒洒的六十多个特效... 每个特效分别对应一个类, 分别来自 FMX.Effects 和 FMX.Filter ...

  4. dig中文帮助

    NAME(名称)     dig — 发送域名查询信息包到域名服务器 SYNOPSIS(总览)     dig [@server] domain [⟨query-type⟩] [⟨query-clas ...

  5. Jmeter之事物控制器

    在我们需要统计一组取样器的统计数据,可以将这一组取样器放置在事物控制器下,进行统计. 一.界面显示 二.配置说明 1.名称:标识 2.注释:备注 3.Generate parent sample: 不 ...

  6. mysql5.7.23性能调优之innodb_buffer_pool_size

    前言 我的数据库版本是5.7.23,最近发现执行SQL越来越慢,一条SQL语句执行需要将近30s. 对于原因,查询资料, https://www.cnblogs.com/qwangxiao/p/892 ...

  7. linux eclipse 下出现undefined reference ***,在使用boost库时出现的问题

    直接在eclipse下添加boost_system就可以了,这个文件有可能在库中找不到,或者名字不一样,直接使用这个名字就可以了,在setting 下

  8. Linq查询语法(1)

    转:http://www.cnblogs.com/ahao214/archive/2013/01/22/2871044.html LINQ的基本格式如下所示:var <变量> = from ...

  9. pytony格式化输出-占位符

    1. %s s = string 字符串 2. %d d = digit 整数 3. %f f = float 浮点数 #!/usr/bin/env python #_*_coding:utf-8_* ...

  10. [Web 前端] 008 css 颜色表示方法

    css 颜色表示法 颜色名表示 如 red 红色 green 绿色 blue 蓝色 16 进制数值表示 常见颜色 正常表示 缩写表示 红色 #ff0000 #f00 绿色 #00ff0 #0f0 蓝色 ...