题目如下:

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3]. Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.

Note:

  • A, B are arrays with the same length, and that length will be in the range [1, 1000].
  • A[i], B[i] are integer values in the range [0, 2000].

解题思路:每个下标对应的元素只有交换和不交换两种选择,记dp[i][0]为在[0~i]这个区间内,在第i个元素不交换时使得[0~i]区间子数组严格递增时总的交换次数,而dp[i][0]为在[0~i]这个区间内,在第i个元素交换时使得[0~i]区间子数组严格递增时总的交换次数。要使得数组严格递增,第i个元素是否需要交换取决于与(i-1)元素的值的大小情况,总得来说分为可能性如下,

1.  A[i] > A[i - 1] and B[i] > B[i - 1]  and A[i] > B[i - 1] and B[i] > A[i - 1] ,这种情况下,第i个元素可以交换或者不交换,并且和i-1是否交换没有任何关系,那么可以得出:  在第i个元素不交换的情况下,dp[i][0] 应该等于第i-1个元素交换与不交换两种情况下的较小值,有 dp[i][0] = min(dp[i][0], dp[i - 1][0], dp[i - 1][1])  ,如果第i个元素非要任性的交换,那么结果就是第i-1个元素交换与不交换两种情况下的较小值加上1,有dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1, dp[i - 1][1] + 1) 。

2. A[i] > A[i - 1] and B[i] > B[i - 1] ,这种情况是i和i-1之间要么都交换,要么都不交换。有 dp[i][0] = min(dp[i][0], dp[i - 1][0]) ,dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1)

3. A[i] > B[i - 1] and B[i] > A[i - 1] and (A[i] <= A[i - 1] or B[i] <= B[i - 1]),这种情况是要么i交换,要么i-1交换。有 dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1),dp[i][0] = min(dp[i][0], dp[i - 1][1])

4.其他情况则表示无论i交换或者不交换都无法保证严格递增。

代码如下:

class Solution(object):
def minSwap(self, A, B):
"""
:type A: List[int]
:type B: List[int]
:rtype: int
"""
dp = [[float('inf')] * 2 for _ in A]
dp[0][0] = 0
dp[0][1] = 1
for i in range(1, len(A)):
if (A[i] > A[i - 1] and B[i] > B[i - 1]) and (A[i] > B[i - 1] and B[i] > A[i - 1]):
dp[i][0] = min(dp[i][0], dp[i - 1][0], dp[i - 1][1])
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1, dp[i - 1][1] + 1)
elif A[i] > A[i - 1] and B[i] > B[i - 1]:
dp[i][0] = min(dp[i][0], dp[i - 1][0])
dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1)
elif A[i] > B[i - 1] and B[i] > A[i - 1] and (A[i] <= A[i - 1] or B[i] <= B[i - 1]):
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1)
dp[i][0] = min(dp[i][0], dp[i - 1][1]) #print dp
return min(dp[-1]) if min(dp[-1]) != float('inf') else -1

【leetcode】801. Minimum Swaps To Make Sequences Increasing的更多相关文章

  1. 【LeetCode】801. Minimum Swaps To Make Sequences Increasing 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 参考资料 日期 题目地址:https:// ...

  2. LeetCode 801. Minimum Swaps To Make Sequences Increasing

    原题链接在这里:https://leetcode.com/problems/minimum-swaps-to-make-sequences-increasing/ 题目: We have two in ...

  3. 801. Minimum Swaps To Make Sequences Increasing

    We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...

  4. 【leetcode】1247. Minimum Swaps to Make Strings Equal

    题目如下: You are given two strings s1 and s2 of equal length consisting of letters "x" and &q ...

  5. 【LeetCode】1151. Minimum Swaps to Group All 1's Together 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 滑动窗口 日期 题目地址:https://leetco ...

  6. [LeetCode] 801. Minimum Swaps To Make Sequences Increasing 最少交换使得序列递增

    We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...

  7. 801. Minimum Swaps To Make Sequences Increasing 为使两个数组严格递增,所需要的最小交换次数

    [抄题]: We have two integer sequences A and B of the same non-zero length. We are allowed to swap elem ...

  8. 【leetcode】963. Minimum Area Rectangle II

    题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...

  9. 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)

    [LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...

随机推荐

  1. postman关联及读取文件进行参数化

    场景:登录后获取响应数据中的key.token..以便在接下来的接口调用.... 一.发送请求.查看响应 二.在Tests里使用响应的js代码来使其成为全局变量......... >>&g ...

  2. bochs 2.6.8 常用命令集合

    b addr 在物理地址处设置断点 addr为物理内存地址,不加段基址 lb 在线性地址处设置断点  addr为线性物理地址,不加基址 vb 在虚拟地址上设置断点 addr为段基址:偏移地址, cs段 ...

  3. ABC133F Small Products

    考虑 DP. 状态 令 $f[\ell][x]$ 表示长度为 $\ell$,首项不超过 $x$ 的序列的个数. 答案是 $f[K][N]$. 有递推 $f[\ell][x] = f[\ell][x - ...

  4. 【pytorch】学习笔记(二)- Variable

    [pytorch]学习笔记(二)- Variable 学习链接自莫烦python 什么是Variable Variable就好像一个篮子,里面装着鸡蛋(Torch 的 Tensor),里面的鸡蛋数不断 ...

  5. # 丢包&&掉帧&&文件删除

    丢包&&掉帧&&文件删除 丢包:指一个或多个数据包(packet)的数据无法透过网络到达目的地,丢失一些信息 掉帧:帧数就是在1秒钟时间里传输的图片的量,每一帧都是静止 ...

  6. C++练习 | 基于栈的中缀算术表达式求值(double类型

    #include<iostream> #include<stack> #include<cmath> using namespace std; char ch; b ...

  7. session的垃圾回收机制

    session.gc_maxlifetime session.gc_probability session.gc_divisor session.gc_divisor 与 session.gc_pro ...

  8. HTML(上)

    目录 HTML(上) 浏览器 HTML 什么是HTML HTML的作用 编写HTML的规范 HTML结构 HTML常用标签 HTML标签速记 HTML(上) 浏览器 浏览器也是一个客户端 #这是一个服 ...

  9. 只读字段(readonly)和常量(const)

    1.常量 一个包含不能修改的值的变量,通过const关键字定义.只能在声明的同时赋值 2.只读字段 通过readonly关键字定义. 可以在声明的同时赋值. 对于实例字段,在包含字段声明的类的实例构造 ...

  10. 数据绑定-集合List绑定

    users.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...