题目如下:

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3]. Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.

Note:

  • A, B are arrays with the same length, and that length will be in the range [1, 1000].
  • A[i], B[i] are integer values in the range [0, 2000].

解题思路:每个下标对应的元素只有交换和不交换两种选择,记dp[i][0]为在[0~i]这个区间内,在第i个元素不交换时使得[0~i]区间子数组严格递增时总的交换次数,而dp[i][0]为在[0~i]这个区间内,在第i个元素交换时使得[0~i]区间子数组严格递增时总的交换次数。要使得数组严格递增,第i个元素是否需要交换取决于与(i-1)元素的值的大小情况,总得来说分为可能性如下,

1.  A[i] > A[i - 1] and B[i] > B[i - 1]  and A[i] > B[i - 1] and B[i] > A[i - 1] ,这种情况下,第i个元素可以交换或者不交换,并且和i-1是否交换没有任何关系,那么可以得出:  在第i个元素不交换的情况下,dp[i][0] 应该等于第i-1个元素交换与不交换两种情况下的较小值,有 dp[i][0] = min(dp[i][0], dp[i - 1][0], dp[i - 1][1])  ,如果第i个元素非要任性的交换,那么结果就是第i-1个元素交换与不交换两种情况下的较小值加上1,有dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1, dp[i - 1][1] + 1) 。

2. A[i] > A[i - 1] and B[i] > B[i - 1] ,这种情况是i和i-1之间要么都交换,要么都不交换。有 dp[i][0] = min(dp[i][0], dp[i - 1][0]) ,dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1)

3. A[i] > B[i - 1] and B[i] > A[i - 1] and (A[i] <= A[i - 1] or B[i] <= B[i - 1]),这种情况是要么i交换,要么i-1交换。有 dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1),dp[i][0] = min(dp[i][0], dp[i - 1][1])

4.其他情况则表示无论i交换或者不交换都无法保证严格递增。

代码如下:

class Solution(object):
def minSwap(self, A, B):
"""
:type A: List[int]
:type B: List[int]
:rtype: int
"""
dp = [[float('inf')] * 2 for _ in A]
dp[0][0] = 0
dp[0][1] = 1
for i in range(1, len(A)):
if (A[i] > A[i - 1] and B[i] > B[i - 1]) and (A[i] > B[i - 1] and B[i] > A[i - 1]):
dp[i][0] = min(dp[i][0], dp[i - 1][0], dp[i - 1][1])
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1, dp[i - 1][1] + 1)
elif A[i] > A[i - 1] and B[i] > B[i - 1]:
dp[i][0] = min(dp[i][0], dp[i - 1][0])
dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1)
elif A[i] > B[i - 1] and B[i] > A[i - 1] and (A[i] <= A[i - 1] or B[i] <= B[i - 1]):
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1)
dp[i][0] = min(dp[i][0], dp[i - 1][1]) #print dp
return min(dp[-1]) if min(dp[-1]) != float('inf') else -1

【leetcode】801. Minimum Swaps To Make Sequences Increasing的更多相关文章

  1. 【LeetCode】801. Minimum Swaps To Make Sequences Increasing 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 参考资料 日期 题目地址:https:// ...

  2. LeetCode 801. Minimum Swaps To Make Sequences Increasing

    原题链接在这里:https://leetcode.com/problems/minimum-swaps-to-make-sequences-increasing/ 题目: We have two in ...

  3. 801. Minimum Swaps To Make Sequences Increasing

    We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...

  4. 【leetcode】1247. Minimum Swaps to Make Strings Equal

    题目如下: You are given two strings s1 and s2 of equal length consisting of letters "x" and &q ...

  5. 【LeetCode】1151. Minimum Swaps to Group All 1's Together 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 滑动窗口 日期 题目地址:https://leetco ...

  6. [LeetCode] 801. Minimum Swaps To Make Sequences Increasing 最少交换使得序列递增

    We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...

  7. 801. Minimum Swaps To Make Sequences Increasing 为使两个数组严格递增,所需要的最小交换次数

    [抄题]: We have two integer sequences A and B of the same non-zero length. We are allowed to swap elem ...

  8. 【leetcode】963. Minimum Area Rectangle II

    题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...

  9. 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)

    [LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...

随机推荐

  1. 【Linux开发】linux设备驱动归纳总结(三):2.字符型设备的操作open、close、read、write

    linux设备驱动归纳总结(三):2.字符型设备的操作open.close.read.write 一.文件操作结构体file_operations 继续上次没讲完的问题,文件操作结构体到底是什么东西, ...

  2. ubuntu服务器上用Nginx和Uwsgi部署django项目

    开发环境:ubuntu系统,python3环境 django项目目录: fast_foot 为项目根目录,app为项目应用 现在,我们登陆远程服务器 安装Nginx 安装好了,我们看一下nginx的配 ...

  3. 小米手机Toast带app名称

    如果用小米手机做测试,会发现,Toast弹窗有可能会在前面带app名称.这是因为你传入的context是activity,如果是Application的话,就不会显示app名称.但是,我做测试时,一般 ...

  4. C# async await的使用

    async 声明一个包含异步代码的函数,该函数执行时不会阻塞调用线程. async标记的函数返回值必须为 void ,Task,Task<TResult> await 必须修饰Task 或 ...

  5. Python assert 关键字

    Python assert(断言)用于判断一个表达式,在表达式条件为 False 的时候触发异常. 断言可以在条件不满足程序运行的情况下直接返回错误,而不必等待程序运行后出现崩溃的情况. 语法格式: ...

  6. PTA(Advanced Level)1011.World Cup Betting

    With the 2010 FIFA World Cup running, football fans the world over were becoming increasingly excite ...

  7. kafka整理笔记笔记

    一.为什么需要消息系统 解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险.许多消息 ...

  8. C++多线程基础学习笔记(一)

    下面分三个方面多线程技术的必须掌握一些基本知识. 1.进程 2.线程 3.并发 (1)进程 一个可执行程序运行起来了,即为创建了一个进程.如在电脑上打开了word,就创建了一个word进程,打开QQ, ...

  9. C++学习 之 类中的特殊函数和this指针(笔记)

    1.构造函数 构造函数是一种特殊的函数,它在对象被创建时被调用,与类同名无返回类型,可以被重载.构造函数的可以在类内实现也可以在类外实现. 构造函数的声明类似于下面的代码: class Human { ...

  10. Android渐变色xml配置

    这里渐变色: <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android=&quo ...