【leetcode】801. Minimum Swaps To Make Sequences Increasing
题目如下:
We have two integer sequences
AandBof the same non-zero length.We are allowed to swap elements
A[i]andB[i]. Note that both elements are in the same index position in their respective sequences.At the end of some number of swaps,
AandBare both strictly increasing. (A sequence is strictly increasing if and only ifA[0] < A[1] < A[2] < ... < A[A.length - 1].)Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.
Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3]. Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.Note:
A, Bare arrays with the same length, and that length will be in the range[1, 1000].A[i], B[i]are integer values in the range[0, 2000].
解题思路:每个下标对应的元素只有交换和不交换两种选择,记dp[i][0]为在[0~i]这个区间内,在第i个元素不交换时使得[0~i]区间子数组严格递增时总的交换次数,而dp[i][0]为在[0~i]这个区间内,在第i个元素交换时使得[0~i]区间子数组严格递增时总的交换次数。要使得数组严格递增,第i个元素是否需要交换取决于与(i-1)元素的值的大小情况,总得来说分为可能性如下,
1. A[i] > A[i - 1] and B[i] > B[i - 1] and A[i] > B[i - 1] and B[i] > A[i - 1] ,这种情况下,第i个元素可以交换或者不交换,并且和i-1是否交换没有任何关系,那么可以得出: 在第i个元素不交换的情况下,dp[i][0] 应该等于第i-1个元素交换与不交换两种情况下的较小值,有 dp[i][0] = min(dp[i][0], dp[i - 1][0], dp[i - 1][1]) ,如果第i个元素非要任性的交换,那么结果就是第i-1个元素交换与不交换两种情况下的较小值加上1,有dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1, dp[i - 1][1] + 1) 。
2. A[i] > A[i - 1] and B[i] > B[i - 1] ,这种情况是i和i-1之间要么都交换,要么都不交换。有 dp[i][0] = min(dp[i][0], dp[i - 1][0]) ,dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1)
3. A[i] > B[i - 1] and B[i] > A[i - 1] and (A[i] <= A[i - 1] or B[i] <= B[i - 1]),这种情况是要么i交换,要么i-1交换。有 dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1),dp[i][0] = min(dp[i][0], dp[i - 1][1])
4.其他情况则表示无论i交换或者不交换都无法保证严格递增。
代码如下:
class Solution(object):
def minSwap(self, A, B):
"""
:type A: List[int]
:type B: List[int]
:rtype: int
"""
dp = [[float('inf')] * 2 for _ in A]
dp[0][0] = 0
dp[0][1] = 1
for i in range(1, len(A)):
if (A[i] > A[i - 1] and B[i] > B[i - 1]) and (A[i] > B[i - 1] and B[i] > A[i - 1]):
dp[i][0] = min(dp[i][0], dp[i - 1][0], dp[i - 1][1])
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1, dp[i - 1][1] + 1)
elif A[i] > A[i - 1] and B[i] > B[i - 1]:
dp[i][0] = min(dp[i][0], dp[i - 1][0])
dp[i][1] = min(dp[i][1], dp[i - 1][1] + 1)
elif A[i] > B[i - 1] and B[i] > A[i - 1] and (A[i] <= A[i - 1] or B[i] <= B[i - 1]):
dp[i][1] = min(dp[i][1], dp[i - 1][0] + 1)
dp[i][0] = min(dp[i][0], dp[i - 1][1]) #print dp
return min(dp[-1]) if min(dp[-1]) != float('inf') else -1
【leetcode】801. Minimum Swaps To Make Sequences Increasing的更多相关文章
- 【LeetCode】801. Minimum Swaps To Make Sequences Increasing 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 参考资料 日期 题目地址:https:// ...
- LeetCode 801. Minimum Swaps To Make Sequences Increasing
原题链接在这里:https://leetcode.com/problems/minimum-swaps-to-make-sequences-increasing/ 题目: We have two in ...
- 801. Minimum Swaps To Make Sequences Increasing
We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...
- 【leetcode】1247. Minimum Swaps to Make Strings Equal
题目如下: You are given two strings s1 and s2 of equal length consisting of letters "x" and &q ...
- 【LeetCode】1151. Minimum Swaps to Group All 1's Together 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 滑动窗口 日期 题目地址:https://leetco ...
- [LeetCode] 801. Minimum Swaps To Make Sequences Increasing 最少交换使得序列递增
We have two integer sequences A and B of the same non-zero length. We are allowed to swap elements A ...
- 801. Minimum Swaps To Make Sequences Increasing 为使两个数组严格递增,所需要的最小交换次数
[抄题]: We have two integer sequences A and B of the same non-zero length. We are allowed to swap elem ...
- 【leetcode】963. Minimum Area Rectangle II
题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...
- 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)
[LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...
随机推荐
- postman关联及读取文件进行参数化
场景:登录后获取响应数据中的key.token..以便在接下来的接口调用.... 一.发送请求.查看响应 二.在Tests里使用响应的js代码来使其成为全局变量......... >>&g ...
- bochs 2.6.8 常用命令集合
b addr 在物理地址处设置断点 addr为物理内存地址,不加段基址 lb 在线性地址处设置断点 addr为线性物理地址,不加基址 vb 在虚拟地址上设置断点 addr为段基址:偏移地址, cs段 ...
- ABC133F Small Products
考虑 DP. 状态 令 $f[\ell][x]$ 表示长度为 $\ell$,首项不超过 $x$ 的序列的个数. 答案是 $f[K][N]$. 有递推 $f[\ell][x] = f[\ell][x - ...
- 【pytorch】学习笔记(二)- Variable
[pytorch]学习笔记(二)- Variable 学习链接自莫烦python 什么是Variable Variable就好像一个篮子,里面装着鸡蛋(Torch 的 Tensor),里面的鸡蛋数不断 ...
- # 丢包&&掉帧&&文件删除
丢包&&掉帧&&文件删除 丢包:指一个或多个数据包(packet)的数据无法透过网络到达目的地,丢失一些信息 掉帧:帧数就是在1秒钟时间里传输的图片的量,每一帧都是静止 ...
- C++练习 | 基于栈的中缀算术表达式求值(double类型
#include<iostream> #include<stack> #include<cmath> using namespace std; char ch; b ...
- session的垃圾回收机制
session.gc_maxlifetime session.gc_probability session.gc_divisor session.gc_divisor 与 session.gc_pro ...
- HTML(上)
目录 HTML(上) 浏览器 HTML 什么是HTML HTML的作用 编写HTML的规范 HTML结构 HTML常用标签 HTML标签速记 HTML(上) 浏览器 浏览器也是一个客户端 #这是一个服 ...
- 只读字段(readonly)和常量(const)
1.常量 一个包含不能修改的值的变量,通过const关键字定义.只能在声明的同时赋值 2.只读字段 通过readonly关键字定义. 可以在声明的同时赋值. 对于实例字段,在包含字段声明的类的实例构造 ...
- 数据绑定-集合List绑定
users.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...