内容提要

搜索

拓展欧几里得

逆元


先是搜索

A*

有几个数组

g 当前点到根节点的深度

h 当前点到终点理想的最优情况需要走几步

f  f=g+h

A*就是把所有的f从小到大排序

启发式搜索相较于其他的搜索的优势在于引入了一个启发式函数f(x) = g(x) +h(x)

g*(x) : 从 S 到 x 的理论最近距离

g(x) : 对 S 到 x 对于 g*(x) 的估计

f*(x) : 从 x 到 T 的理论最近距离,F*(x)=g*(x)+h*(x)

f(x) : 从 x 到 T 对于 f*(x) 的估计,F(x)=g(x)+h(x)

可以理解为:带*的是开挂的,不带*的是真实的

当满足 f(x) <= f*(x) 时,总能找到最优解

和 BFS 几乎一样,只是每次都弹出当前局面中f(x)最小的那个局面进行扩展

——故需要维护一个优先队列(小根堆)

——使用系统的priority_queue<>即可

当 f(x) = g(x) + h(x) 中 h(x) = 0 即失去了启发式函数,则变为Breath First Search

当 f(x) = g(x) + h(x) 中 g(x) = 0 则变为 Best First Search

当第一次到终点的时候就输出g(x)就可以了

例题:八数码

如何告诉计算机某种情况已经到达过呢:

如何做到将一个 1~n 的排列与一个整数做一一对应?

或者更直白的:

如何求出字典序第 k 的排列?

如何求出一个排列在字典序中排第几?

这样数组只需要开9!=36880

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
const int sizeofpoint=;
const int sizeofedge=; int N, M;
int S, T, K;
int d[sizeofpoint], t[sizeofpoint]; struct node
{
int u; int g; inline node(int _u, int _g):u(_u), g(_g) {}
};
inline bool operator > (const node & , const node & ); struct edge
{
int point; int dist;
edge * next;
};
inline edge * newedge(int, int, edge * );
inline void link(int, int, int);
edge memory[sizeofedge], * port=memory;
edge * e[sizeofpoint], * f[sizeofpoint];
std::priority_queue<node, std::vector<node>, std::greater<node> > h; inline int getint();
inline void dijkstra(int);
inline int Astar(); int main()
{
N=getint(), M=getint();
for (int i=;i<=M;i++)
{
int u=getint(), v=getint(), d=getint();
link(u, v, d);
}
S=getint(), T=getint(), K=getint();
dijkstra(T); if (d[S]==-)
{
puts("-1");
return ;
} K+=S==T; printf("%d\n", Astar()); return ;
} inline bool operator > (const node & u, const node & v)
{
return (u.g+d[u.u])>(v.g+d[v.u]);
} inline edge * newedge(int point, int dist, edge * next)
{
edge * ret=port++;
ret->point=point, ret->dist=dist, ret->next=next;
return ret;
}
inline void link(int u, int v, int d)
{
e[v]=newedge(u, d, e[v]);
f[u]=newedge(v, d, f[u]);
} inline int getint()
{
register int num=;
register char ch;
do ch=getchar(); while (ch<'' || ch>'');
do num=num*+ch-'', ch=getchar(); while (ch>='' && ch<='');
return num;
}
inline void dijkstra(int S)
{
static int q[sizeofedge];
static bool b[sizeofpoint];
int l=, r=; memset(d, 0xFF, sizeof(d)), d[S]=;
for (q[r++]=S, b[S]=true;l<r;l++)
{
int u=q[l]; b[u]=false;
for (edge * i=e[u];i;i=i->next) if (d[i->point]==- || d[u]+i->dist<d[i->point])
{
d[i->point]=d[u]+i->dist;
if (!b[i->point])
{
b[i->point]=true;
q[r++]=i->point;
}
}
}
}
inline int Astar()
{
h.push(node(S, ));
while (!h.empty())
{
node p=h.top(); h.pop();
++t[p.u];
if (p.u==T && t[T]==K)
return p.g;
if (t[p.u]>K)
continue;
for (edge * i=f[p.u];i;i=i->next)
h.push(node(i->point, p.g+i->dist));
}
return -;
}

IDA*

g:从根节点往下几步

h:步数

g+h>d return

双向A*?双向IDA*?

h(x)>h*(x)?

事实上h(x)与h*(x)的关系隐形决定了A*的运行速度与准确度

h(x)越接近h*(x)跑得越快

拓展欧几里得

裴蜀定理:(x, y) = d ===> 存在无限多组整数 a,b:ax + by = d

证明:计算机竞赛不需要证明

扩展欧几里得算法可以帮助我们计算出 (x, y) = d 时一组 a,b:

什么?你问为什么?这么短的代码你背下来不就好了嘛?

扩展欧几里得算法有什么用呢?——计算逆元

逆元的定义:如果 x 对 p 有一个逆元 y,则 x * y == 1 (mod p)

x 对一个数 p 有逆元当且仅当 (x, p) = 1

意义:在取模意义下做除法

由裴蜀定理:存在 a, b 满足:ax + bp = 1

嗯……,等等,岂不是 ax == 1 (mod p)

计算组合数模p

中国剩余定理

问题、求余方程组 x = ai (mod pi)

不多说,背代码:

令 P = p1 * p2 * ... * pn

令 Pi = P / pi

令 Qi = Pi 对 pi 的逆元

则 x = sigma(ai * Pi * Qi)

qbzt day2 晚上(竟然还有晚上)的更多相关文章

  1. qbzt day2 下午

    内容提要 高精 矩阵 筛法 先是高精除法 注意细节 高精度开方:神奇的竖式 以小数点为分界线,每两个位砍一刀 87654.321-->08|76|54|.32|1 大概就是先对第一位开方,然后相 ...

  2. qbzt day2 上午

    内容提要 贪心 分治 分块 搜索 接着昨天的讲 过河问题 考虑AB是最快的人,CD是最慢的人,要把CD两个人送过河,只有两种方案,牵扯到四个人,并且n个规模的原问题化成了n-2个规模的子问题 那么最后 ...

  3. 开发一个 app 有多难?

    171 个回答 默认排序​ 道衍天机 有事情的加微信1293190838找我 1,150 人赞同了该回答 ----------------------------------------------- ...

  4. Before NOIP 2018

    目录 总结 刷题 2018 - 9 - 24 2018 - 9 - 25 2018 - 9 - 26 2018 - 9 - 27 2018 - 9 - 28 2018 - 9 - 29 2018 - ...

  5. 【扯淡篇】SDOI2018丶一轮游丶记

    --某不知名蒟蒻的SDOI2018 R1退役场游记&&OI生涯总结 真的是混不下去了. 进队是不可能的, 进队是不可能进队的. 这辈子不可能进队的. 刷题又不会刷 就是靠打表找规律这种 ...

  6. 苹果 OS X 系统U盘重装-抹盘重装、系统盘制作

    鉴于前段时间系统出了点问题,然后直接将盘抹了,来个彻底干净的系统重装.这里敲下过程.(网络恢复太慢了,我整整一个晚上竟然没down下来,恼怒了,直接U盘装) First,系统盘制作: 1.首先需要有: ...

  7. 请列出你在从事IT生涯中,最难以忘怀的一次误操作

    IT系统最怕什么,我觉得就两点: 1.不可靠的软硬件. 2.误操作. 第一点就不用解释了,第二点是该文的内容,主要摘选自ITPUB的精华贴——[精华] 请列出你在从事DBA生涯中,最难以忘怀的一次误操 ...

  8. JavaEE——Intellij Idea 创建JavaWeb项目

    原文:JavaEE--Intellij Idea 创建JavaWeb项目 折腾Tomcat折腾了两个晚上,第一个晚上怎么都进不了Tomcat的首页,第二个晚上进去了,但是新建的Web项目,在浏览器中运 ...

  9. 一个想法照进现实-《IT连》创业项目:三天的风投对接活动内幕分享

    前言: 话说出来创业的,都有一颗寻找风投的心,只因都有一个共同的特征:缺钱. 有的只是缺几十万,有的缺几百万,有的缺几千万,有的缺几个亿. 中国的市场,只要有需求,就有服务,只要有服务,就多了套路. ...

随机推荐

  1. P2294 [HNOI2005]狡猾的商人(差分约束)

    P2294 [HNOI2005]狡猾的商人 对于每个$(x,y,w)$,连边$(x-1,y,w),(y,x-1,-w)$,表示前$y$个月的收益比前$x-1$个月的收益大$w$ 这样题目就转化为询问图 ...

  2. Markdown在线编辑及预览

    推荐一款不错的Markdown语法手册,最可贵的是支持在线编辑预览: Cmd Markdown简介 Cmd Markdown语法手册及在线编辑 补充一些使用技巧: MarkDown实现段首缩进:「Ma ...

  3. Ubuntu下通过apache建立虚拟主机

    一个搞前端交互的,总会遇到这样那样的,不需要写代码去解决的问题,怎么搞?答:只能去大海里捞,问题很明确但答案不一定靠谱,因为回答的人不用去考虑你是否会给自己系统搞崩溃. 那么我只能把自己经过验证的答案 ...

  4. Python 通过dmidecode获取Linux服务器硬件信息

    通过 dmidecode 命令可以获取到 Linux 系统的包括 BIOS. CPU.内存等系统的硬件信息,这里使用 python 代码来通过调用 dmidecode 命令来获取 Linux 必要的系 ...

  5. Ubuntu 增加新用户并赋予root权限及免密的方法

    添加用户 添加一个名为hylink的用户 adduser hylink 修改密码 passwd hylink Changing password for user hylink. New UNIX p ...

  6. CollectionView刷新问题,以及定时器与控制器的销毁问题

    1.CollectionView的刷新必须首先保证CollectionView有高度 注意事项:在cell中嵌套CollectionView,如果使用的是AutoLayout的话,一定要注意保证Col ...

  7. PCA原理推导及其在数据降维中的应用

    一个信号往往包含多个维度,各个维度之间可能包含较强的相关性.下图表示的是一组二维信号x=(x1,x2),可以看到数据点基本上分布在x2=x1这条直线上,二者存在很强的相关性(也就是确定x1之后,就能确 ...

  8. Maven 添加其他Maven组件配置问题

    在父工程的pom文件里,添加如下配置 <project> <!--其它配置--> <modules> <module>A项目文件夹</module ...

  9. Codeforces 935 简单几何求圆心 DP快速幂求与逆元

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  10. ascii 八进制

    int main() 4 { 5 char buf[20] = {'\101','\102','\103',0}; 6 printf("%s",buf); 7 return 0; ...