链接:https://ac.nowcoder.com/acm/contest/634/C

来源:牛客网

题目描述

给出一个区间[L,R],求出[L,R]中孪生质数有多少对。

由于这是一个区间筛质数的模板题。所以小k不屑于去写。

所以出题人只好yy了另一道题。

定义k生互质数为满足y + k与y - k互质的数。

现在给出区间[L,R],你需要输出区间内k生互质数有多少对

我们说一对k生互质数在区间[L,R]内,当且仅当y+k \in[L,R]y+k∈[L,R]且y-k \in[L,R]y−k∈[L,R]

输入描述:

一行三个数字L,R,k

输出描述:

一行一个数字表示区间[L,R]内的k生互质数的对数

示例1

输入

复制

5 10 1

输出

复制

2

说明

分别为(5,7),(7,9)

示例2

输入

复制

287 11633 10

输出

复制

4532

备注:

0 \leq L,R \leq 10^{18}0≤L,R≤10

18

1 \leq k \leq 10^{13}1≤k≤10

13

思路:

题意为让你寻找 L 到 R 中 多少 x 使 gcd(x-k,x+k)=1

根据gcd的性质,我们可以得到 gcd(x,x+2 * k ) =1

即 gcd(x,2k)=1

有因为 题目要求 x+k 小于R

所以 题目可以转化为 l~r-2k 中,有多少个数 x 使得 gcd(x, 2k)==1

这就是一个景点的问题了。

即:

对 2 * k 进行素数分解,[l,r] 所有gcd > 1的数字集合中 可能包括 i 种和 2 * k 相同的素因子,枚举一下用容斥原理扣掉,先扣掉包括一种 相同素因子的数的个数, 然后加上 包括 两种相同素因子的数的个数。。。。一路搞到包括所有素因子(容斥原理)。至于有多少个数包含这些数因子,除一下就知道了。

两个细节:

r-2k后可以小于l

l可以为0 要判断 l-1 和0的大小关系。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ std::vector<ll> v;
void breakdown(ll x)
{
for(ll i=2ll;i*i<=x;++i)
{
int cnt=0;
while(x%i==0)
{
cnt++;
x/=i;
}
if(cnt)
{
v.push_back(i);
}
}
if(x>1)
{
v.pb(x);
}
}
ll l,r,k;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin>>l>>r>>k;
k<<=1;
r-=k;
if(l>r)
{
cout<<0<<endl;
return 0;
}
breakdown(k);
int len=sz(v);
int maxstate=(1<<len)-1;
ll ans=0ll;
l=max(l-1ll,0ll);
for(int i=0;i<=maxstate;++i)
{
int num=0;
ll p=1ll;
for(int j=0;j<len;++j)
{
if(i&(1<<j))
{
num++;
p*=v[j];
}
}
// cout<<(r/p-l/p)<<" "<<num<<endl;
ans+=(r/p-l/p)*((num&1)?-1ll:1ll);
}
cout<<ans<<endl;
return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

牛客练习赛44 C 小y的质数 (数论,容斥定理)的更多相关文章

  1. 牛客练习赛44 A 小y的序列 (模拟,细节)

    链接:https://ac.nowcoder.com/acm/contest/634/A 来源:牛客网 小y的序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语 ...

  2. 牛客练习赛44 B 小y的线段 (思维)

    链接:https://ac.nowcoder.com/acm/contest/634/B 来源:牛客网 题目描述 给出n条线段,第i条线段的长度为a_ia i ​ ,每次可以从第i条线段的j位置跳到第 ...

  3. 牛客练习赛48 C 小w的糖果 (数学,多项式,差分)

    牛客练习赛48 C 小w的糖果 (数学,多项式) 链接:https://ac.nowcoder.com/acm/contest/923/C来源:牛客网 题目描述 小w和他的两位队友teito.toki ...

  4. 牛客练习赛48 A· 小w的a+b问题 (贪心,构造,二进制)

    牛客练习赛48 A· 小w的a+b问题 链接:https://ac.nowcoder.com/acm/contest/923/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C ...

  5. 牛客练习赛44 C:小y的质数

    链接:https://ac.nowcoder.com/acm/contest/634/C?tdsourcetag=s_pcqq_aiomsg 来源:牛客网 题目描述 给出一个区间\([L,R]\),求 ...

  6. 牛客练习赛44 B:小y的线段

    链接:https://ac.nowcoder.com/acm/contest/634/B 来源:牛客网 题目描述 给出\(n\)条线段,第\(i\)条线段的长度为\(a_i\),每次可以从第\(i\) ...

  7. 牛客练习赛44 B题 (思维)

    链接:https://ac.nowcoder.com/acm/contest/634/B 来源:牛客网 给出n条线段,第i条线段的长度为ai, 每次可以从第i条线段的j位置跳到第i + 1条线段的j+ ...

  8. 牛客练习赛48 D 小w的基站网络

    链接:https://ac.nowcoder.com/acm/contest/923/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  9. 牛客练习赛14 A n的约数 (数论)

    链接:https://ac.nowcoder.com/acm/contest/82/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288 ...

随机推荐

  1. RxJava2实战---第六章 条件操作符和布尔操作符

    RxJava2实战---第六章 条件操作符和布尔操作符 RxJava的条件操作符主要包括以下几个: amb():给定多个Observable,只让第一个发射数据的Obsrvable发射全部数据. de ...

  2. linux常用命令(8)cat命令

    cat命令的用途是连接文件或标准输入并打印.这个命令常用来显示文件内容,或者将几个文件连接起来显示,或者从标准输入读取内容并显示,它常与重定向符号配合使用. 1 命令格式:cat [选项] [文件]. ...

  3. JS事件中级 --- 拖拽

    http://bbs.zhinengshe.com/thread-1200-1-1.html 要求:实现div块的拖拽 原理:拖拽过程中鼠标点和div块的相对位置保持不变. 需要理解三点: 1. 为什 ...

  4. office web apps安装部署,配置https,负载均衡(三)服务器连接域控制器

    前提条件:1>一台window server 2008R2 服务器 2>您已经在同一内网的另外一台服务器上安装好了域控制器文档请看我写的另外一篇文章: office web apps安装部 ...

  5. 配置文件 "G:\虚拟机列表\Linux001.vmx" 由产品 VMware 创建, 其版本 VMware Workstation 不兼容并且不能使用.

    解析: 报这种错误一般是虚拟机文件里声明的VMware版本和真实的VMware版本不一致导致.我们可以手动更改真实VMware版本,或者更改虚拟机文件里声明的VMware版本.以下我们通过更该虚拟机文 ...

  6. Angular项目里Js代码里如何获取Ts文件中的属性数据

    基于之前实现的Angular+ngx-ueditor富文本编辑器做一个简单补充记录,我们在使用Angular开发过程中,难免会使用到调用外部插件Js的应用,但是有的时候又需要在Js文件中调用Ts文件里 ...

  7. DNS 域名系统与邮件服务器

    目录 DNS 域名系统 定义 域名分类 解析流程 DNS分类 资源记录 格式 资源记录类型 用bind搭建一台DNS服务器 安装bind 创建自己的zone文件 在主配置文件中,增加自己的zone 检 ...

  8. kafka整理笔记笔记

    一.为什么需要消息系统 解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险.许多消息 ...

  9. 关闭mysql查询缓存query cache(用户测试性能)

    先对query cache进行查询 mysql> show global variables like '%cache%'; 查看query_cache_size.query_cache_typ ...

  10. solr学习笔记-增加mmesg4J中文分词

    solr版本6.1.centos6.7.mmesg4j版本2.30 solr安装目录:/usr/local/solr-6.1.0 1.下载mmesg4j包: 地址:https://github.com ...