spark 笔记 14: spark中的delay scheduling实现
// Figure out which locality levels we have in our TaskSet, so we can do delay scheduling
var myLocalityLevels = computeValidLocalityLevels()
var localityWaits = myLocalityLevels.map(getLocalityWait) // Time to wait at each level
// Delay scheduling variables: we keep track of our current locality level and the time we
// last launched a task at that level, and move up a level when localityWaits[curLevel] expires.
// We then move down if we manage to launch a "more local" task.
var currentLocalityIndex = 0 // Index of our current locality level in validLocalityLevels
// Set of pending tasks for each executor. These collections are actually
// treated as stacks, in which new tasks are added to the end of the
// ArrayBuffer and removed from the end. This makes it faster to detect
// tasks that repeatedly fail because whenever a task failed, it is put
// back at the head of the stack. They are also only cleaned up lazily;
// when a task is launched, it remains in all the pending lists except
// the one that it was launched from, but gets removed from them later.
private val pendingTasksForExecutor = new HashMap[String, ArrayBuffer[Int]]
// Set of pending tasks for each host. Similar to pendingTasksForExecutor,
// but at host level.
private val pendingTasksForHost = new HashMap[String, ArrayBuffer[Int]]
// Set of pending tasks for each rack -- similar to the above.
private val pendingTasksForRack = new HashMap[String, ArrayBuffer[Int]]
// Set containing pending tasks with no locality preferences.
var pendingTasksWithNoPrefs = new ArrayBuffer[Int]
var lastLaunchTime = clock.getTime() // Time we last launched a task at this level/**
* Compute the locality levels used in this TaskSet. Assumes that all tasks have already been
* added to queues using addPendingTask.
*
*/
private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = {
import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY}
val levels = new ArrayBuffer[TaskLocality.TaskLocality]
if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 &&
pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) {
levels += PROCESS_LOCAL
}
if (!pendingTasksForHost.isEmpty && getLocalityWait(NODE_LOCAL) != 0 &&
pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) {
levels += NODE_LOCAL
}
if (!pendingTasksWithNoPrefs.isEmpty) {
levels += NO_PREF
}
if (!pendingTasksForRack.isEmpty && getLocalityWait(RACK_LOCAL) != 0 &&
pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) {
levels += RACK_LOCAL
}
levels += ANY
logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", "))
levels.toArray
}
private def getLocalityWait(level: TaskLocality.TaskLocality): Long = {
val defaultWait = conf.get("spark.locality.wait", "3000")
level match {
case TaskLocality.PROCESS_LOCAL =>
conf.get("spark.locality.wait.process", defaultWait).toLong
case TaskLocality.NODE_LOCAL =>
conf.get("spark.locality.wait.node", defaultWait).toLong
case TaskLocality.RACK_LOCAL =>
conf.get("spark.locality.wait.rack", defaultWait).toLong
case _ => 0L
}
}
@DeveloperApi
object TaskLocality extends Enumeration {
// Process local is expected to be used ONLY within TaskSetManager for now.
val PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY = Value
type TaskLocality = Value
def isAllowed(constraint: TaskLocality, condition: TaskLocality): Boolean = {
condition <= constraint
}
}
/**
* Find the index in myLocalityLevels for a given locality. This is also designed to work with
* localities that are not in myLocalityLevels (in case we somehow get those) by returning the
* next-biggest level we have. Uses the fact that the last value in myLocalityLevels is ANY.
*/
def getLocalityIndex(locality: TaskLocality.TaskLocality): Int = {
var index = 0
while (locality > myLocalityLevels(index)) {
index += 1
}
index
}
/**
* Get the level we can launch tasks according to delay scheduling, based on current wait time.
*/
private def getAllowedLocalityLevel(curTime: Long): TaskLocality.TaskLocality = {
while (curTime - lastLaunchTime >= localityWaits(currentLocalityIndex) &&
currentLocalityIndex < myLocalityLevels.length - 1)
{
// Jump to the next locality level, and remove our waiting time for the current one since
// we don't want to count it again on the next one
lastLaunchTime += localityWaits(currentLocalityIndex)
currentLocalityIndex += 1
}
myLocalityLevels(currentLocalityIndex)
}
def recomputeLocality() {
val previousLocalityLevel = myLocalityLevels(currentLocalityIndex)
myLocalityLevels = computeValidLocalityLevels()
localityWaits = myLocalityLevels.map(getLocalityWait)
currentLocalityIndex = getLocalityIndex(previousLocalityLevel)
}
/**
* Compute the locality levels used in this TaskSet. Assumes that all tasks have already been
* added to queues using addPendingTask.
*
*/
private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = {
import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY}
val levels = new ArrayBuffer[TaskLocality.TaskLocality]
if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 &&
pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) {
levels += PROCESS_LOCAL
}
if (!pendingTasksForHost.isEmpty && getLocalityWait(NODE_LOCAL) != 0 &&
pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) {
levels += NODE_LOCAL
}
if (!pendingTasksWithNoPrefs.isEmpty) {
levels += NO_PREF
}
if (!pendingTasksForRack.isEmpty && getLocalityWait(RACK_LOCAL) != 0 &&
pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) {
levels += RACK_LOCAL
}
levels += ANY
logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", "))
levels.toArray
}
/**
* Dequeue a pending task for a given node and return its index and locality level.
* Only search for tasks matching the given locality constraint.
*
* @return An option containing (task index within the task set, locality, is speculative?)
*/
private def findTask(execId: String, host: String, maxLocality: TaskLocality.Value)
: Option[(Int, TaskLocality.Value, Boolean)] =
{
for (index <- findTaskFromList(execId, getPendingTasksForExecutor(execId))) {
return Some((index, TaskLocality.PROCESS_LOCAL, false))
}
。。。
// find a speculative task if all others tasks have been scheduled
findSpeculativeTask(execId, host, maxLocality).map {
case (taskIndex, allowedLocality) => (taskIndex, allowedLocality, true)}
}
spark 笔记 14: spark中的delay scheduling实现的更多相关文章
- spark 笔记 3:Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling
spark论文中说他使用了延迟调度算法,源于这篇论文:http://people.csail.mit.edu/matei/papers/2010/eurosys_delay_scheduling.pd ...
- spark 笔记 2: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf ucb关于spark的论文,对spark中核心组件RDD最原始.本质的理解, ...
- Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...
- spark学习笔记总结-spark入门资料精化
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...
- Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...
- Apache Spark 2.2.0 中文文档
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 ...
- spark 笔记 7: DAGScheduler
在前面的sparkContex和RDD都可以看到,真正的计算工作都是同过调用DAGScheduler的runjob方法来实现的.这是一个很重要的类.在看这个类实现之前,需要对actor模式有一点了解: ...
- Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...
- 二、spark入门之spark shell:文本中发现5个最常用的word
scala> val textFile = sc.textFile("/Users/admin/spark-1.5.1-bin-hadoop2.4/README.md") s ...
随机推荐
- TensorFlow入门——MNIST初探
import tensorflow.examples.tutorials.mnist.input_data as input_data import tensorflow as tf mnist = ...
- 深入简出mysql--第一部分
第二章: 1.sql分类 DDL(Data Definition Languages)语句:数据定义语言,这些语句定义了不同的数据段.数据库.表.列.索引等数据库对象的定义. 常用的语句关键字主要包括 ...
- UITableViewCell背景色.选中背景色,分割线,字体颜色设置
1.系统默认的颜色设置 //无色 cell.selectionStyle = UITableViewCellSelectionStyleNone; //蓝色 cell.selectionStyle = ...
- Mysql命令行添加用户
创建用户: 命令: ? 1 CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明:username – 你将创建的用户名, host – ...
- 生产者消费者问题--synchronized
# 代码 public class App { public static void main(String[] args) { Depot depot = new Depot(100); Produ ...
- Python内部执行过程
一.编译过程概述 当我们执行Python代码的时候,在Python解释器用四个过程“拆解”我们的代码,最终被CPU执行返回给用户. 首先当用户键入代码交给Python处理的时候会先进行词法分析,例如用 ...
- BZOJ3555 [Ctsc2014]企鹅QQ[暴力+字符串hash]
菜到自闭,一道省选小水题都能给我做繁. 要求有一位不同,则对每个串每一位暴力枚举把这一位删掉,放一个分隔符,算一下hash,插表,相似的都应该会被插入同一个桶.最后把hash统计一下即可.复杂度$O( ...
- poj2182 Lost Cows[BIT二分]
blog题解鸽了许久了..本来说好的切一题写一个题解的说 一个$1 \sim n$数列,已知每个数前面比他小的数个数,试确定该序列. 相当的一道水题.可以发现数列最后一个数是首先可以确定下来的.然后把 ...
- 多对多第三张表的创建方式 和 forms组件的使用
目录 一.多对多第三张表的创建 1. 全自动方式 (1)实现代码 (2)优点和不足 2. 纯手撸方式(了解) (1)实现代码 (2)优点和不足 3. 半自动方式(推荐使用) (1)实现代码 (2)优点 ...
- 吴恩达+neural-networks-deep-learning+第二周作业
Logistic Regression with a Neural Network mindset v4 简单用logistic实现了猫的识别,logistic可以被看做一个简单的神经网络结构,下面是 ...