Pangu and Stones

时间限制:1000ms
单点时限:1000ms
内存限制:256MB

描述

In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He woke up from an egg and split the egg into two parts: the sky and the earth.

At the beginning, there was no mountain on the earth, only stones all over the land.

There were N piles of stones, numbered from 1 to N. Pangu wanted to merge all of them into one pile to build a great mountain. If the sum of stones of some piles was S, Pangu would need S seconds to pile them into one pile, and there would be S stones in the new pile.

Unfortunately, every time Pangu could only merge successive piles into one pile. And the number of piles he merged shouldn't be less than L or greater than R.

Pangu wanted to finish this as soon as possible.

Can you help him? If there was no solution, you should answer '0'.

输入

There are multiple test cases.

The first line of each case contains three integers N,L,R as above mentioned (2<=N<=100,2<=L<=R<=N).

The second line of each case contains N integers a1,a2 …aN (1<= ai  <=1000,i= 1…N ), indicating the number of stones of  pile 1, pile 2 …pile N.

The number of test cases is less than 110 and there are at most 5 test cases in which N >= 50.

输出

For each test case, you should output the minimum time(in seconds) Pangu had to take . If it was impossible for Pangu to do his job, you should output  0.

样例输入
3 2 2
1 2 3
3 2 3
1 2 3
4 3 3
1 2 3 4
样例输出
9
6
0

题意

给出n堆石头,每次最少合并其中l堆,最多合并r堆,问合成1堆最少需要花费多少时间

题解

dp[i][j][k]表示i~j这个区间合成k堆所需要的最小时间,故可得状态转移方程式:
d为枚举的区间间隔
1.k==1 dp[i][i+d][1]=min(dp[i][i+d][1],dp[i][j][k]+dp[j+1][i+d][1]+sum[i][i+d])
(l-1<=k<=r-1)
2.k>=2 dp[i][i+d][k]=min(dp[i][i+d][k],dp[i][j][k-1]+dp[j+1][i+d][1])
此处k不用做限制

事实上,只需要在合并一堆的时候限制条件就行了,因为所有k>2的情况都是由k=1的情况得出的,所以在都初始化为inf的情况下,不能合成1堆,dp[i][j][1]=inf,那么后面所有由dp[i][j][1]推出的情况也是inf

C++代码

#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N=;
const int inf=0x3f3f3f3f;
int n,l,r;
int w[N];
int sum[N][N];
int dp[N][N][N];//i~j区间分成k堆最小价格
int main()
{
while(~scanf("%d%d%d",&n,&l,&r))
{
for(int i=; i<=n; i++)
scanf("%d",&w[i]);
mem(dp,inf);
for(int i=; i<=n; i++)
{
sum[i][i-]=;
for(int j=i; j<=n; j++)
{
sum[i][j]=sum[i][j-]+w[j];
dp[i][j][j-i+]=;//初始化初状态
}
}
for(int d=; d<=n; d++)
for(int i=; i+d<=n; i++)
{
for(int j=i; j<=i+d-; j++)
for(int k=l-; k<=r-; k++)
{
dp[i][i+d][]=min(dp[i][i+d][],dp[i][j][k]+dp[j+][i+d][]+sum[i][i+d]);
}
for(int k=; k<=d; k++)
for(int j=i; j<=i+d-; j++)
dp[i][i+d][k]=min(dp[i][i+d][k],dp[i][j][k-]+dp[j+][i+d][]);
}
if(dp[][n][]==inf)
puts("");
else
printf("%d\n",dp[][n][]);
}
return ;
}

hihocoder 1636 : Pangu and Stones(区间dp)的更多相关文章

  1. hihoCoder 1636 Pangu and Stones

    hihoCoder 1636 Pangu and Stones 思路:区间dp. 状态:dp[i][j][k]表示i到j区间合并成k堆石子所需的最小花费. 初始状态:dp[i][j][j-i+1]=0 ...

  2. [ICPC 北京 2017 J题]HihoCoder 1636 Pangu and Stones

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  3. icpc 2017北京 J题 Pangu and Stones 区间DP

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  4. 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  5. HihoCoder - 1636 Pangu and Stones(区间DP)

    有n堆石子,每次你可以把相邻的最少L堆,最多R堆合并成一堆. 问把所有石子合并成一堆石子的最少花费是多少. 如果不能合并,输出0. 石子合并的变种问题. 用dp[l][r][k]表示将 l 到 r 之 ...

  6. HihoCoder 1636 Pangu and Stones(区间DP)题解

    题意:合并石子,每次只能合并l~r堆成1堆,代价是新石堆石子个数,问最后能不能合成1堆,不能输出0,能输出最小代价 思路:dp[l][r][t]表示把l到r的石堆合并成t需要的最小代价. 当t == ...

  7. 2017ICPC北京 J:Pangu and Stones

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  8. Pangu and Stones HihoCoder - 1636 区间DP

    Pangu and Stones HihoCoder - 1636 题意 给你\(n\)堆石子,每次只能合成\(x\)堆石子\((x\in[L, R])\),问把所有石子合成一堆的最小花费. 思路 和 ...

  9. Pangu and Stones(HihoCoder-1636)(17北京OL)【区间DP】

    题意:有n堆石头,盘古每次可以选择连续的x堆合并,所需时间为x堆石头的数量之和,x∈[l,r],现在要求,能否将石头合并成一堆,如果能,最短时间是多少. 思路:(参考了ACM算法日常)DP[i][j] ...

随机推荐

  1. 实战build-react(三)+ style-components

    npm install --save style-components https://www.jianshu.com/p/27788be90605(copy) "axios": ...

  2. 洛谷 P1140 相似基因 ( 线性DP || 类LCS )

    题意 : 题目链接 分析 :  可以观察到给出的配对代价表中对角线部分是正数 其余的都是负数,也就是说让相同字母的匹配的越多越好 即找出 LCS 但是这里 DP 的过程需要记录一下代价 有关 LCS ...

  3. 洛谷P3943 星空——题解

    一道很好的锻炼思维难度的题,如果您能在考场上直接想出来的话,提高组450分以上就没问题了吧.(别像作者一样看了好几篇题解才勉强会) 先提取出题目大意:给定一个长度n<=40000的01串,其中1 ...

  4. shell基础练习题

    shell 基础练习题 1.编写脚本/root/bin/systeminfo.sh,显示当前主机系统信息,包括主机名,IPv4地址,操作系统版本,内核版本,CPU型号,内存大小,硬盘大小 #!/bin ...

  5. Jedis下的ShardedJedis

    jedis客户端操作redis主要三种模式:单台模式.分片模式(ShardedJedis).集群模式(BinaryJedisCluster) ShardedJedis是通过一致性哈希来实现分布式缓存的 ...

  6. C#中的事件委托

    C#中的事件与委托,对于我们写业务代码的程序员来说不常用,这就会导致经常忘记,这边再温习一下. //委托 public delegate void MyEventDelegateHandler(str ...

  7. Oracle数据库表空间查看和更改

    set linesize 200  --设置输出一行字符个数为200 1.查看表空间名称和大小(单位MB) SELECT t.tablespace_name, round(SUM(bytes / (1 ...

  8. [BZOJ1902]:[NOIP2004]虫食算(搜索)

    题目传送门 题目描述 所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母. 来看一个简单的例子: 43#98650#45+8468#6633=444455069 ...

  9. 安装telnet服务

    一.安装telnet1.检测telnet-server的rpm包是否安装 [root@localhost ~]# rpm -qa telnet-server 若无输入内容,则表示没有安装.出于安全考虑 ...

  10. 网站模板-AdminLTE:AdminLTE

    ylbtech-网站模板-AdminLTE:AdminLTE 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部 1. https://adminlte.io/ 1. ...