[BZOJ1018][SHOI2008]堵塞的交通traffic 时间分治线段树
介绍一种比较慢的但是好想的做法。
网上漫天的线段树维护联通性,然后想起来费很大周折也很麻烦。我的做法也是要用线段树的,不过用法完全不同。
这个东西叫做时间分治线段树。
首先我们建一个\(1..m+1\)的线段树。
很好做出每条边的存在时间的区间是吧,所以我们这段时间存入线段树中。(最后都没有消失的视为\(m+1\)时间消失)记录下每个节点的对应区间的所有边。
然后从上往下扫整个线段树,将该段区间的边用并查集维护连通性。遇到询问就查一下。
回去的时候还有撤掉之前连的边,所以并查集给用只有按秩合并,不带按秩合并。这样并查集一次的操作时间复杂度\(O(\log n)\)。
总时间复杂度\(O(n\log ^2 n)\)。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<map>
#define lc o<<1
#define rc o<<1|1
#define REP(i,a,n) for(register int i(a);i<=(n);++i)
#define PER(i,a,n) for(register int i(a);i>=(n);--i)
#define FEC(i,x,y) for(register int i=head[x],y=g[i].to;i;i=g[i].ne,y=g[i].to)
#define dbg(...) fprintf(stderr,__VA_ARGS__)
const int SZ=(1<<21)+1;char ibuf[SZ],*iS,*iT,obuf[SZ+128],*oS=obuf,*oT=obuf+SZ-1;
#ifdef ONLINE_JUDGE
#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SZ,stdin),(iS==iT?EOF:*iS++)):*iS++)
#else
#define gc() getchar()
#endif
template<typename I>inline void read(I&x){char c=gc();int f=0;for(;c<'0'||c>'9';c=gc())c=='-'?f=1:0;for(x=0;c>='0'&&c<='9';c=gc())x=(x<<1)+(x<<3)+(c&15);f?x=-x:0;}
template<typename I>inline void read(I*s){char c=gc();for(;c<=' ';c=gc());for(;c>' ';c=gc())*s++=c;*s='\0';}
inline void flush(){fwrite(obuf,1,oS-obuf,stdout);oS=obuf;}
#define printf(...) (oS>oT&&(flush(),1),oS+=sprintf(oS,__VA_ARGS__))
#define putchar(x) (oS>oT&&(flush(),1),*oS++=(x))
template<typename A,typename B>inline char SMAX(A&a,const B&b){return a<b?a=b,1:0;}
template<typename A,typename B>inline char SMIN(A&a,const B&b){return a>b?a=b,1:0;}
typedef long long ll;typedef unsigned long long ull;typedef std::pair<int,int>pii;
const int N=200000+7;
int n,m,x1,y1,x2,y2,id[3][N],ans[N],ext[N];char opt[7];
int fa[N],siz[N];
inline int Find(int x){return fa[x]==x?x:Find(fa[x]);}
inline void Union(int x,int y){x=Find(x),y=Find(y);if(siz[x]<siz[y])std::swap(x,y);SMAX(siz[x],siz[y]+1);fa[y]=x;}
struct QUE{int opt,x,y,prex,prey,sizx,sizy;}q[N<<1];std::vector<QUE>t[N<<1];
inline void Insert(int o,int L,int R,int l,int r,QUE k){
if(l<=L&&R<=r)return t[o].push_back(k);
int M=(L+R)>>1;if(l<=M)Insert(lc,L,M,l,r,k);if(r>M)Insert(rc,M+1,R,l,r,k);
}
inline void Insert(int o,int L,int R,int x,QUE k){
if(L==R)return t[o].push_back(k);
int M=(L+R)>>1;x<=M?Insert(lc,L,M,x,k):Insert(rc,M+1,R,x,k);
}
inline void Solve(int o,int L,int R){
int len=t[o].size();REP(i,0,len-1)if(t[o][i].opt){const int&x=Find(t[o][i].x),y=Find(t[o][i].y);if(x==y)continue;t[o][i].prex=fa[x],t[o][i].prey=fa[y];t[o][i].sizx=siz[x],t[o][i].sizy=siz[y];Union(x,y);}
if(L==R){REP(i,0,len-1)if(!t[o][i].opt)ans[t[o][i].prex]=Find(t[o][i].x)==Find(t[o][i].y);}
else{int M=(L+R)>>1;Solve(lc,L,M);Solve(rc,M+1,R);}
PER(i,len-1,0)if(t[o][i].opt){const int&x=t[o][i].prex,&y=t[o][i].prey;fa[x]=x,fa[y]=y,siz[x]=t[o][i].sizx,siz[y]=t[o][i].sizy;}//错误笔记:和第44行一样,这里的prex啥的应该存下来其find的信息不是自己的信息
}
std::map<pii,int>mp;
int main(){
read(n);REP(i,1,n)id[1][i]=i,id[2][i]=n+i,fa[i]=i,fa[n+i]=n+i,siz[i]=siz[n+i]=1;n<<1;//错误笔记:并查集要记得初始化
REP(i,1,N){
read(opt);if(*opt=='E'){m=i-1;break;}
read(x1),read(y1),read(x2),read(y2);q[i]=QUE{(int)*opt,id[x1][y1],id[x2][y2]};
}
REP(i,1,m){
int opt=q[i].opt,id1=q[i].x,id2=q[i].y;
if(opt=='O')mp[pii(id1,id2)]=i;
else if(opt=='C'){
pii e(id1,id2);
Insert(1,1,m+1,mp[e],i,QUE{1,id1,id2});mp.erase(e);
}else if(opt=='A')Insert(1,1,m+1,i,QUE{0,id1,id2,++ans[0]});
}
std::map<pii,int>::iterator p=mp.begin();
while(p!=mp.end()){Insert(1,1,m+1,p->second,m+1,QUE{1,p->first.first,p->first.second});++p;}
Solve(1,1,m+1);
REP(i,1,ans[0])putchar(ans[i]?'Y':'N'),putchar('\n');
return flush(),0;
}
[BZOJ1018][SHOI2008]堵塞的交通traffic 时间分治线段树的更多相关文章
- bzoj千题计划108:bzoj1018: [SHOI2008]堵塞的交通traffic
http://www.lydsy.com/JudgeOnline/problem.php?id=1018 关键点在于只有两行 所以一个2*m矩形连通情况只有6种 编号即对应代码中的a数组 线段树维护 ...
- [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性
1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec Memory Limit: 162 MB Submit: 3795 Solved: 1253 [Sub ...
- 【离线 撤销并查集 线段树分治】bzoj1018: [SHOI2008]堵塞的交通traffic
本题可化成更一般的问题:离线动态图询问连通性 当然可以利用它的特殊性质,采用在线线段树维护一些标记的方法 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常 ...
- BZOJ1018 [SHOI2008]堵塞的交通traffic
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【线段树】bzoj1018 [SHOI2008]堵塞的交通traffic
线段树的每个叶子节点存一列. 每个节点维护六个域,分别是左上左下.左上右上.左上右下.左下右上.左下右下.右上右下在区间内部的连通性,不考虑绕出去的情况. 初始每个叶子的左上左下.右上右下是连通的. ...
- Bzoj1018[SHOI2008]堵塞的交通traffic(线段树)
这题需要维护连通性,看到有连接删除,很容易直接就想LCT了.然而这题点数20w操作10w,LCT卡常估计过不去.看到这个东西只有两行,考虑能否用魔改后的线性数据结构去维护.我想到了线段树. 考虑如果两 ...
- bzoj1018[SHOI2008]堵塞的交通traffic——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...
- [bzoj1018][SHOI2008]堵塞的交通traffic_线段树
bzoj-1018 SHOI-2008 堵塞的交通traffic 参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html 题目大意:有一天,由于某 ...
- 【BZOJ1018】[SHOI2008]堵塞的交通traffic 线段树
[BZOJ1018][SHOI2008]堵塞的交通traffic Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个 ...
随机推荐
- select选项
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Advanced search keywords
Advanced search options Find what you're looking for in less time. Use the following symbols to quic ...
- 微信小程序的事件
事件,视图层到逻辑层的一种通讯方式,或者将用户的行为返回到逻辑层,当我们在组件绑定事件之后,当我们触发事件,就会执行逻辑层绑定的事件,处理回调函数,当页面的事件触发之后 页面上元素一些额外事件,通过事 ...
- scrapy基础笔记
公众号原文 公众号排版更友好,建议查看公众号原文 前言 reference: https://www.tutorialspoint.com/scrapy/scrapy_quick_guide.htm ...
- Oracle简单学习
最近一段时间重温了oracle关于存储过程和oracle包以及function中的定义, 先看一下要用的表: devices(id number, name varchar2, age number) ...
- 《JAVA设计模式》之策略模式(Strategy)
在阎宏博士的<JAVA与模式>一书中开头是这样描述策略(Strategy)模式的: 策略模式属于对象的行为模式.其用意是针对一组算法,将每一个算法封装到具有共同接口的独立的类中,从而使得它 ...
- Spring切面编程之AOP
AOP 是OOP 的延续,是Aspect Oriented Programming 的缩写,意思是面向切面编程.可以通过预编译方式和运行期动态代理实现在不修改源代码的情况下给程序动态统一添加功能的一种 ...
- [eclipse相关] 001 - 启动+运行优化
本随笔参考了其他博客内容,且在验证有效之下才或誊抄或摘录或加上自己经验组合而成. 参考博客: 1,http://zwd596257180.gitee.io/blog/2019/04/17/eclips ...
- webpack的code spliting与chunks
webpack的code spliting与chunks :https://blog.csdn.net/liuqi332922337/article/details/53020992
- SpringBoot实现上传下载(二)
这篇写下载. **1.实现思路** 上一篇的数据库设计中,我们有一个字段始终没有用到fileName,这是用来给Layer对象存储文件名的,以此来完成文件与对象的对应, ![image.png](ht ...