题面

https://www.lydsy.com/JudgeOnline/problem.php?id=4990

分析

首先可以看出一个简单的DP
dp[i][j]表示序列a前i个与序列b前j个连线数量
dp[i][j]=max(dp[i−1][j],dp[i][j−1],dp[i−1][j−1](∣a[i]−b[j]∣<=4))
这样DP的时间复杂度为O(n^2)
发现该方程除了转移的判断条件之外和LCS并无什么不同,因此可考虑LCS的优化方法

提示:阅读下面内容前,请先确保自己掌握一般情况下LCS转LIS的过程,以及LIS的O(nlog2n)O(nlog_2n)算法

考虑LCS转LIS,原本的方法是记录a[i]中每个值的位置pos,将b[i]转化为pos[b[i]]
既然∣a[i]−b[j]∣<=4都可杯看做“相等”
则我们对于每个b[i]±j (0<=j<=4),将pos[b[i]±j]加入数组c,求c的LIS即为答案
但注意到每个点只能连一条边,也就是对于每个b[i],9个b[i]±j中只能选一个加入LIS
所以将9个一组从大到小排序,再拼起来,这样每组数中至多有一个数被选进LIS,(若选两个,则c[i]>c[i+1],矛盾)
时间复杂度O(nlog_2n)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 100005
using namespace std;
int n;
int a[maxn],b[maxn];
int pos[maxn];
vector<int>tmp;
vector<int>c;
int s[maxn*9];
int m;
int cmp(int x,int y) {
return x>y;
}
int solve() {
for(int i=1;i<=n;i++){
tmp.clear();
for(int j=0;j<=4;j++){
if(b[i]+j<=n) tmp.push_back(pos[b[i]+j]);
if(b[i]-j>=1) tmp.push_back(pos[b[i]-j]);
}
sort(tmp.begin(),tmp.end(),cmp);
int t=tmp.size();
for(int j=0;j<t;j++){
c.push_back(tmp[j]);
}
}
int m=c.size();
// for(int i=0;i<m;i++) printf("%d ",c[i]);
// printf("\n");
int top=0;
for(int i=0; i<m; i++) {
if(c[i]>s[top]) {
s[++top]=c[i];
} else {
int tmp=lower_bound(s+1,s+1+top,c[i])-s;
s[tmp]=c[i];
}
}
return top;
} int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
pos[a[i]]=i;
}
for(int i=1; i<=n; i++) {
scanf("%d",&b[i]);
}
printf("%d\n",solve());
}

BZOJ4990 (LCS转LIS)的更多相关文章

  1. O(nlogn)实现LCS与LIS

    序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...

  2. 最长公共子序列-LCS问题 (LCS与LIS在特殊条件下的转换) [洛谷1439]

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 ...

  3. UVa10635 - Prince and Princess(LCS转LIS)

    题目大意 有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n^2之间的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 题解 这个是大白书上的例题,不过 ...

  4. BZOJ 1264 基因匹配Match(LCS转化LIS)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1264 题意:给出两个数列,每个数列的长度为5n,其中1-n每个数字各出现5次.求两个数列 ...

  5. uva 10635 Prince and Princess(LCS成问题LIS问题O(nlogn))

    标题效果:有两个长度p+1和q+1该序列.的各种元素的每个序列不是相互同.并1~n^2之间的整数.个序列的第一个元素均为1. 求出A和B的最长公共子序列长度. 分析:本题是LCS问题,可是p*q< ...

  6. LCS and LIS

    LCS #include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; char s[1005],t ...

  7. BZOJ1264 [AHOI2006]基因匹配Match 【LCS转LIS】

    题目链接 BZOJ1264 题解 平凡的\(LCS\)是\(O(n^2)\)的 显然我们要根据题目的性质用一些不平凡的\(LCS\)求法 这就很巧妙了,, 我们考虑\(A\)序列的每个位置可能匹配\( ...

  8. uva 10635 LCS转LIS

    这道题两个数组都没有重复的数字,用lcs的nlogn再适合不过了 #include <iostream> #include <string> #include <cstr ...

  9. Uva 10635 Prince and Princess (LCS变形LIS)

    直接LCS是时间复杂度是O(p*q)的,但是序列元素各不相同,只要把其中一个序列映射成有序的, 另外一个序列再做相同的映射,没有的直接删掉,就变成了求另一个序列LIS. #include<bit ...

随机推荐

  1. 【Linux】CentOS6安装jdk1.8

    1.查看官网下载地址 接受协议后,点击下载链接 查看发出的请求,获得下载地址 其中后面的AuthParam参数为本次下载的即时参数,每次都不一样 2.下载安装包 下载完后改个名 wget https: ...

  2. ESP8266-12F

    读者可以把ESP8266当做Arduino+WiFi功能来开发 ESP8266模块支持STA/AP/STA+AP 三种工作模式: STA 模式:ESP8266模块通过路由器连接互联网,手机或电脑通过互 ...

  3. Spring AOP expose-proxy

    写在前面 expose-proxy.为是否暴露当前代理对象为ThreadLocal模式. SpringAOP对于最外层的函数只拦截public方法,不拦截protected和private方法(后续讲 ...

  4. react native之封装离线缓存框架

    请求数据=>本地有无缓存+缓存数据是否过期 =>可用 =>不可用 将代码封装成一个DataStore.js文件, 这里面主要提供:从本地获取数据,从网络获取数据,创建本地时间戳,请求 ...

  5. mybatis添加数据时返回主键 insert 返回主键值

    insert 返回主键值 useGeneratedKeys=“true” parameterType=“USer” keyProperty=“id”, <insert id="inse ...

  6. HDU 1298 T9 ( 字典树 )

    题意 : 给你 w 个单词以及他们的频率,现在给出模拟 9 键打字的一串数字,要你在其模拟打字的过程中给出不同长度的提示词,出现的提示词应当是之前频率最高的,当然提示词不需要完整的,也可以是 w 个单 ...

  7. #1122 JSP动作元素

    JSP动作元素 与JSP指令元素不同的是,JSP动作元素在请求处理阶段起作用.JSP动作元素是用XML语法写成的. 利用JSP动作可以动态地插入文件.重用JavaBean组件.把用户重定向到另外的页面 ...

  8. http协议的深刻理解

    https://www.cnblogs.com/mayite/p/9095986.html

  9. RabbitMQ消费端ACK与重回队列机制,TTL,死信队列详解(十一)

    消费端的手工ACK和NACK 消费端进行消费的时候,如果由于业务异常我们可以进行日志的记录,然后进行补偿. 如果由于服务器宕机等严重问题,那么我们就需要手工进行ACK保障消费端成功. 消费端重回队列 ...

  10. Java 静态static 关键字作用

    静态的方法1.可以通过类名打点访问2.不能使用this关键字3.不能访问非静态的属性和方法 /* * 静态的方法: * 1.属于类的方法,可以通过类名打点访问 * 2.方法中不能使用this关键字 * ...