题面

https://www.lydsy.com/JudgeOnline/problem.php?id=4990

分析

首先可以看出一个简单的DP
dp[i][j]表示序列a前i个与序列b前j个连线数量
dp[i][j]=max(dp[i−1][j],dp[i][j−1],dp[i−1][j−1](∣a[i]−b[j]∣<=4))
这样DP的时间复杂度为O(n^2)
发现该方程除了转移的判断条件之外和LCS并无什么不同,因此可考虑LCS的优化方法

提示:阅读下面内容前,请先确保自己掌握一般情况下LCS转LIS的过程,以及LIS的O(nlog2n)O(nlog_2n)算法

考虑LCS转LIS,原本的方法是记录a[i]中每个值的位置pos,将b[i]转化为pos[b[i]]
既然∣a[i]−b[j]∣<=4都可杯看做“相等”
则我们对于每个b[i]±j (0<=j<=4),将pos[b[i]±j]加入数组c,求c的LIS即为答案
但注意到每个点只能连一条边,也就是对于每个b[i],9个b[i]±j中只能选一个加入LIS
所以将9个一组从大到小排序,再拼起来,这样每组数中至多有一个数被选进LIS,(若选两个,则c[i]>c[i+1],矛盾)
时间复杂度O(nlog_2n)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 100005
using namespace std;
int n;
int a[maxn],b[maxn];
int pos[maxn];
vector<int>tmp;
vector<int>c;
int s[maxn*9];
int m;
int cmp(int x,int y) {
return x>y;
}
int solve() {
for(int i=1;i<=n;i++){
tmp.clear();
for(int j=0;j<=4;j++){
if(b[i]+j<=n) tmp.push_back(pos[b[i]+j]);
if(b[i]-j>=1) tmp.push_back(pos[b[i]-j]);
}
sort(tmp.begin(),tmp.end(),cmp);
int t=tmp.size();
for(int j=0;j<t;j++){
c.push_back(tmp[j]);
}
}
int m=c.size();
// for(int i=0;i<m;i++) printf("%d ",c[i]);
// printf("\n");
int top=0;
for(int i=0; i<m; i++) {
if(c[i]>s[top]) {
s[++top]=c[i];
} else {
int tmp=lower_bound(s+1,s+1+top,c[i])-s;
s[tmp]=c[i];
}
}
return top;
} int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
pos[a[i]]=i;
}
for(int i=1; i<=n; i++) {
scanf("%d",&b[i]);
}
printf("%d\n",solve());
}

BZOJ4990 (LCS转LIS)的更多相关文章

  1. O(nlogn)实现LCS与LIS

    序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...

  2. 最长公共子序列-LCS问题 (LCS与LIS在特殊条件下的转换) [洛谷1439]

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 ...

  3. UVa10635 - Prince and Princess(LCS转LIS)

    题目大意 有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n^2之间的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 题解 这个是大白书上的例题,不过 ...

  4. BZOJ 1264 基因匹配Match(LCS转化LIS)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1264 题意:给出两个数列,每个数列的长度为5n,其中1-n每个数字各出现5次.求两个数列 ...

  5. uva 10635 Prince and Princess(LCS成问题LIS问题O(nlogn))

    标题效果:有两个长度p+1和q+1该序列.的各种元素的每个序列不是相互同.并1~n^2之间的整数.个序列的第一个元素均为1. 求出A和B的最长公共子序列长度. 分析:本题是LCS问题,可是p*q< ...

  6. LCS and LIS

    LCS #include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; char s[1005],t ...

  7. BZOJ1264 [AHOI2006]基因匹配Match 【LCS转LIS】

    题目链接 BZOJ1264 题解 平凡的\(LCS\)是\(O(n^2)\)的 显然我们要根据题目的性质用一些不平凡的\(LCS\)求法 这就很巧妙了,, 我们考虑\(A\)序列的每个位置可能匹配\( ...

  8. uva 10635 LCS转LIS

    这道题两个数组都没有重复的数字,用lcs的nlogn再适合不过了 #include <iostream> #include <string> #include <cstr ...

  9. Uva 10635 Prince and Princess (LCS变形LIS)

    直接LCS是时间复杂度是O(p*q)的,但是序列元素各不相同,只要把其中一个序列映射成有序的, 另外一个序列再做相同的映射,没有的直接删掉,就变成了求另一个序列LIS. #include<bit ...

随机推荐

  1. 负载均衡(二)DNS负载均衡

    一.DNS原理及解析过程详解 相信大家在平时工作中都离不开DNS解析,DNS解析是互联网访问的第一步,无论是使用笔记本浏览器访问网络还是打开手机APP的时候,访问网络资源的第一步必然要经过DNS解析流 ...

  2. layui问题之渲染数据表格时,只显示10条数据

    通过ajax请求的数据,console.log()有30条数据,实际上只显示10条, 原因是没有设置limit table.render({ elem: '#report-collection' , ...

  3. Node.js 版本管理工具——nvm

    日常项目开发中,有些项目可能基于node  V10 或者 V8 不同的版本: 如果我们手动安装卸载node,这样是不友好. 先放上作者的博客地址 : https://www.cnblogs.com/g ...

  4. Python自动化运维技术与最佳实现

    第一章 系统基础信息模块详解 系统基础信息采集模块最为监控模块的重要组成部分,能够帮助运维人员了解当前系统的健康程度,同时也是衡量业务的服务质量的依据,比如系统资源吃紧,会直接影响业务的质量以及用户的 ...

  5. react native 之 在现有的iOS工程中集成react native

    在现有的iOS工程中集成react native, 或者说将react native引入到iOS 项目,是RN和iOS混合开发的必经之路 参考官网教程:https://reactnative.cn/d ...

  6. 浙大PAT CCCC L3-013 非常弹的球 ( 高中物理题 )

    题目链接 题意 : 刚上高一的森森为了学好物理,买了一个“非常弹”的球.虽然说是非常弹的球,其实也就是一般的弹力球而已.森森玩了一会儿弹力球后突然想到,假如他在地上用力弹球,球最远能弹到多远去呢?他不 ...

  7. Kohana Cache

    The default cache group is loaded based on the Cache::$default setting. It is set to the file driver ...

  8. 【PowerOJ1736&网络流24题】飞行员配对方案问题(最小割)

    题意: n<=100,要求输出方案 思路:准备把没刷的24题从头搞一遍 输出方案的话就在增广的时候记一下另一端的编号就好 #include<bits/stdc++.h> using ...

  9. 20180827(02)- Java发送邮件

    Java 发送邮件 使用Java应用程序发送E-mail十分简单,但是首先你应该在你的机器上安装JavaMail API 和Java Activation Framework (JAF) . 你可以在 ...

  10. CG-CTF | MD5

    渣渣今天写了一题misc,第一次学习md5的python写法,赶紧记录一波 背景知识: import hashlib md51=hashlib.md5() md52=hashlib.md5() # [ ...