BZOJ4990 (LCS转LIS)
题面
https://www.lydsy.com/JudgeOnline/problem.php?id=4990
分析
首先可以看出一个简单的DP
dp[i][j]表示序列a前i个与序列b前j个连线数量
dp[i][j]=max(dp[i−1][j],dp[i][j−1],dp[i−1][j−1](∣a[i]−b[j]∣<=4))
这样DP的时间复杂度为O(n^2)
发现该方程除了转移的判断条件之外和LCS并无什么不同,因此可考虑LCS的优化方法
提示:阅读下面内容前,请先确保自己掌握一般情况下LCS转LIS的过程,以及LIS的O(nlog2n)O(nlog_2n)算法
考虑LCS转LIS,原本的方法是记录a[i]中每个值的位置pos,将b[i]转化为pos[b[i]]
既然∣a[i]−b[j]∣<=4都可杯看做“相等”
则我们对于每个b[i]±j (0<=j<=4),将pos[b[i]±j]加入数组c,求c的LIS即为答案
但注意到每个点只能连一条边,也就是对于每个b[i],9个b[i]±j中只能选一个加入LIS
所以将9个一组从大到小排序,再拼起来,这样每组数中至多有一个数被选进LIS,(若选两个,则c[i]>c[i+1],矛盾)
时间复杂度O(nlog_2n)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 100005
using namespace std;
int n;
int a[maxn],b[maxn];
int pos[maxn];
vector<int>tmp;
vector<int>c;
int s[maxn*9];
int m;
int cmp(int x,int y) {
return x>y;
}
int solve() {
for(int i=1;i<=n;i++){
tmp.clear();
for(int j=0;j<=4;j++){
if(b[i]+j<=n) tmp.push_back(pos[b[i]+j]);
if(b[i]-j>=1) tmp.push_back(pos[b[i]-j]);
}
sort(tmp.begin(),tmp.end(),cmp);
int t=tmp.size();
for(int j=0;j<t;j++){
c.push_back(tmp[j]);
}
}
int m=c.size();
// for(int i=0;i<m;i++) printf("%d ",c[i]);
// printf("\n");
int top=0;
for(int i=0; i<m; i++) {
if(c[i]>s[top]) {
s[++top]=c[i];
} else {
int tmp=lower_bound(s+1,s+1+top,c[i])-s;
s[tmp]=c[i];
}
}
return top;
}
int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++) {
scanf("%d",&a[i]);
pos[a[i]]=i;
}
for(int i=1; i<=n; i++) {
scanf("%d",&b[i]);
}
printf("%d\n",solve());
}
BZOJ4990 (LCS转LIS)的更多相关文章
- O(nlogn)实现LCS与LIS
序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...
- 最长公共子序列-LCS问题 (LCS与LIS在特殊条件下的转换) [洛谷1439]
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 ...
- UVa10635 - Prince and Princess(LCS转LIS)
题目大意 有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n^2之间的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 题解 这个是大白书上的例题,不过 ...
- BZOJ 1264 基因匹配Match(LCS转化LIS)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1264 题意:给出两个数列,每个数列的长度为5n,其中1-n每个数字各出现5次.求两个数列 ...
- uva 10635 Prince and Princess(LCS成问题LIS问题O(nlogn))
标题效果:有两个长度p+1和q+1该序列.的各种元素的每个序列不是相互同.并1~n^2之间的整数.个序列的第一个元素均为1. 求出A和B的最长公共子序列长度. 分析:本题是LCS问题,可是p*q< ...
- LCS and LIS
LCS #include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; char s[1005],t ...
- BZOJ1264 [AHOI2006]基因匹配Match 【LCS转LIS】
题目链接 BZOJ1264 题解 平凡的\(LCS\)是\(O(n^2)\)的 显然我们要根据题目的性质用一些不平凡的\(LCS\)求法 这就很巧妙了,, 我们考虑\(A\)序列的每个位置可能匹配\( ...
- uva 10635 LCS转LIS
这道题两个数组都没有重复的数字,用lcs的nlogn再适合不过了 #include <iostream> #include <string> #include <cstr ...
- Uva 10635 Prince and Princess (LCS变形LIS)
直接LCS是时间复杂度是O(p*q)的,但是序列元素各不相同,只要把其中一个序列映射成有序的, 另外一个序列再做相同的映射,没有的直接删掉,就变成了求另一个序列LIS. #include<bit ...
随机推荐
- springboot 集成oss
集成aliyun oss 结构如下: pom.xml <dependency> <groupId>org.springframework.boot</groupId> ...
- ARM指令集的最新版本包括针对JavaScript的优化
在ARM指令集中,ARMv8.3添加了一个新的float-to-int指令,其错误和超出范围的值按照JavaScript的方式处理.以前[指令]获取JavaScript的语义要慢得多,JavaScri ...
- POJ-1459-Pwoer Network(最大流Dinic, 神仙输入)
链接: https://vjudge.net/problem/POJ-1459 题意: A power network consists of nodes (power stations, consu ...
- Arduino库
单总线库: 下载地址 : 链接:https://pan.baidu.com/s/1YSuqrXWuBAxMEUWHy8rckw 提取码:svix 把整个文件夹复制到 Arduino安装目录的 ...
- linux运维、架构之路-MySQL日志(三)
一.MySQL日志 1.错误日志 ①配置方法 [mysqld] log-error=/data/mysql/mysql.log ②查看配置方式 mysql> show variables lik ...
- SQL server 表copy 到别一张表
SQL server 表copy 到别一张表 ------------------ INSERT INTO 表名 (表字段) SELECT 表1字段 FROM 表名2: ---------- ...
- Solr分组查询
项目中需要实时的返回一下统计的东西,因此就要进行分组,在获取一些东西,代码拿不出来,因此分享一篇,还是很使用的. facet搜索 /** * * 搜索功能优化-关键词搜索 * 搜索范围:商品名称.店 ...
- HDU 6616 Divide the Stones
目录 题面 中文题意 比赛惨状 我的走不通的思路 \(m\)是偶数的情况 \(m\)是奇数的情况 题解的思路 另一些思路 源代码 题面 Time limit 3000 ms Memory limit ...
- CodeForces 1197D Yet Another Subarray Problem
Time limit 2000 ms Memory limit 262144 kB Source Educational Codeforces Round 69 (Rated for Div. 2) ...
- 在XenCenter6.2中构建CentOS7虚拟机的启动错误
在XenCenter6.2中创建CentOS7虚拟机时,发现系统并没有提供CentOS7 64bit的模板,只有CentOS6 64bit模板.如果采用CentOS6作为其模板来创建CentOS7虚拟 ...