Python中的十大图像处理工具
转自:微信博客
机器学习研究会订阅号
微信号
功能介绍机器学习研究会由百度七剑客雷鸣先生创办,旨在推动AI的技术发展和产业落地。参与组织北大、清华”AI前沿与产业趋势“公开课,广泛的和高校、企业、创业、VC开展合作,自身也参与优秀AI项目的投资和孵化。
本文主要介绍了一些简单易懂最常用的Python图像处理库
当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。
图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。 Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。
让我们看一下用于图像处理任务的一些常用Python库。
1. scikit Image
scikit-image是一个基于numpy数组的开源Python包。 它实现了用于研究、教育和工业应用的算法和实用程序。 即使是对于那些刚接触Python的人,它也是一个相当简单的库。 此库代码质量非常高并已经过同行评审,是由一个活跃的志愿者社区编写的。
使用说明文档:
https://scikit-image.org/docs/stable/user_guide.html
用法举例:图像过滤、模版匹配
可使用“skimage”来导入该库。大多数功能都能在子模块中找到。
import matplotlib.pyplot as plt
%matplotlib inline
from skimage import data,filters
image = data.coins()
# ... or any other NumPy array!
edges = filters.sobel(image)
plt.imshow(edges, cmap='gray')
模版匹配(使用match_template函数)
gallery上还有更多例子。
https://scikit-image.org/docs/dev/auto_examples/
2. Numpy
Numpy是Python编程的核心库之一,支持数组结构。 图像本质上是包含数据点像素的标准Numpy数组。 因此,通过使用基本的NumPy操作——例如切片、脱敏和花式索引,可以修改图像的像素值。 可以使用skimage加载图像并使用matplotlib显示。
使用说明文档:
http://www.numpy.org/
用法举例:使用Numpy来对图像进行脱敏处理
import numpy as np
from skimage import data
import matplotlib.pyplot as plt
%matplotlib inline
image = data.camera()
type(image)
numpy.ndarray #Image is a numpy array
mask = image < 87
image[mask]=255
plt.imshow(image, cmap='gray')
3. Scipy
scipy是Python的另一个核心科学模块,就像Numpy一样,可用于基本的图像处理和处理任务。值得一提的是,子模块scipy.ndimage提供了在n维NumPy数组上运行的函数。 该软件包目前包括线性和非线性滤波、二进制形态、B样条插值和对象测量等功能。
使用说明文档:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
用法举例:使用SciPy的高斯滤波器对图像进行模糊处理
from scipy import misc,ndimage
face = misc.face()
blurred_face = ndimage.gaussian_filter(face, sigma=3)
very_blurred = ndimage.gaussian_filter(face, sigma=5)
#Results
plt.imshow(<image to be displayed>)
4. PIL/ Pillow
PIL (Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开、处理和保存许多不同图像文件格式的支持。 然而,它的发展停滞不前,其最后一次更新还是在2009年。幸运的是, PIL有一个正处于积极开发阶段的分支Pillow,它非常易于安装。Pillow能在所有主要操作系统上运行并支持Python 3。该库包含基本的图像处理功能,包括点操作、使用一组内置卷积内核进行过滤以及颜色空间转换。
使用说明文档:
https://pillow.readthedocs.io/en/3.1.x/index.html
用法举例:使用ImageFilter增强Pillow中的图像
from PIL import Image, ImageFilter
#Read image
im = Image.open( 'image.jpg' )
#Display image
im.show()
from PIL import ImageEnhance
enh = ImageEnhance.Contrast(im)
enh.enhance(1.8).show("30% more contrast")
5. OpenCV-Python
OpenCV( 开源计算机视觉库,Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的python API。 OpenCV-Python不仅速度快(因为后台由用C / C ++编写的代码组成),也易于编码和部署(由于前端的Python包装器)。 这使其成为执行计算密集型计算机视觉程序的绝佳选择。
使用说明文档:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
用法举例:使用Pyramids创建一个名为'Orapple'的新水果的功能
6. SimpleCV
SimpleCV也是用于构建计算机视觉应用程序的开源框架。 通过它可以访问如OpenCV等高性能的计算机视觉库,而无需首先了解位深度、文件格式或色彩空间等。学习难度远远小于OpenCV,并且正如他们的标语所说,“ 它使计算机视觉变得简单 ”。支持SimpleCV的一些观点是:
即使是初学者也可以编写简单的机器视觉测试
摄像机、视频文件、图像和视频流都可以交互操作
使用说明文档:
https://simplecv.readthedocs.io/en/latest/
用法举例
7. Mahotas
Mahotas是另一个用于Python的计算机视觉和图像处理库。 它包含传统的图像处理功能(如滤波和形态学操作)以及用于特征计算的更现代的计算机视觉功能(包括兴趣点检测和局部描述符)。 该接口使用Python,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行很快,它的代码很简单,(对其它库的)依赖性也很小。 建议阅读他们的官方文档以了解更多内容。
使用说明文档:
https://mahotas.readthedocs.io/en/latest/install.html
用法举例
Mahotas库使用简单的代码来完成工作。 对于“ 寻找Wally ”的问题,Mahotas完成的得很好,而且代码量非常小。
8. SimpleITK
ITK(Insight Segmentation and Registration Toolkit)是一个开源的跨平台系统,为开发人员提供了一整套用于图像分析的软件工具。 其中, SimpleITK是一个建立在ITK之上的简化层,旨在促进其在快速原型设计、教育以及脚本语言中的使用。SimpleITK是一个包含大量组件的图像分析工具包,支持一般的过滤操作、图像分割和配准。 SimpleITK本身是用C++编写的,但可用于包括Python在内的大量编程语言。
使用说明文档:
https://github.com/hhatto/pgmagick
这里有大量说明了如何使用SimpleITK进行教育和研究活动的Jupyter notebook。notebook中演示了如何使用SimpleITK进行使用Python和R编程语言的交互式图像分析。
用法举例
下面的动画是使用SimpleITK和Python创建的可视化的严格CT / MR配准过程。
9. pgmagick
pgmagick是GraphicsMagick库基于Python的包装器。GraphicsMagick 图像处理系统有时被称为图像处理的瑞士军刀。它提供了强大而高效的工具和库集合,支持超过88种主要格式图像的读取、写入和操作,包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF等重要格式。
使用说明文档:
https://github.com/hhatto/pgmagick
用法举例:图片缩放、边缘提取
图片缩放
边缘提取
10. Pycairo
Pycairo是图形库cairo的一组python绑定。 Cairo是一个用于绘制矢量图形的2D图形库。 矢量图形很有趣,因为它们在调整大小或进行变换时不会降低清晰度。Pycairo库可以从Python调用cairo命令。
使用说明文档:
https://github.com/pygobject/pycairo
用法:Pycairo可以绘制线条、基本形状和径向渐变
以上就是一些免费的优秀图像处理Python库。有些很知名,你可能已经知道或者用过,有些可能对你来说还是新的。那正好现在就上手操作一下,试一试吧!
Python中的十大图像处理工具的更多相关文章
- CSDN总结的面试中的十大可视化工具
1. D3.js 基于JavaScript的数据可视化库,允许绑定任意数据到DOM,然后将数据驱动转换应用到Document中. 2. Data.js Data.js是一个JavaScript数据表示 ...
- 构建ASP.NET网站十大必备工具
最近使用ASP.NET为公司构建了一个简单的公共网站(该网站的地址:http://superexpert.com/).在这个过程中,我们使用了数量很多的免费工具,如果把构建ASP.NET网站的必备工具 ...
- 2018全球十大测试工具Top2 Katalon
引言 由Capgemini,Sogeti和Micro Focus发布的2017-2018年世界质量报告中,Katalon超越老牌测试工具UFT(源自QTP)成为黑马新秀,在全球十大自动化测试工具中排名 ...
- MySQL管理员珍藏:十大必备工具盘点
作者:dongdongzzcs 第1页: [IT168 专稿]本文的作者Daniel Nichter是MySQL工具的开发者,他为MySQL管理员推荐了十款必备工具.以下是全文内容: MySQL是一套 ...
- python基础__十大经典排序算法
用Python实现十大经典排序算法! 排序算法是<数据结构与算法>中最基本的算法之一.排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大, ...
- python中数字类型与处理工具
python中的数字类型工具 python中为更高级的工作提供很多高级数字编程支持和对象,其中数字类型的完整工具包括: 1.整数与浮点型, 2.复数, 3.固定精度十进制数, 4.有理分数, 5.集合 ...
- Go开发中的十大常见陷阱[译]
原文: The Top 10 Most Common Mistakes I've Seen in Go Projects 作者: Teiva Harsanyi 译者: Simon Ma 我在Go开发中 ...
- 构建ASP.NET网站十大必备工具(1)
最近使用ASP.NET为公司构建了一个简单的公共网站(该网站的地址:http://superexpert.com/).在这个过程中,我们使用了数量很多的免费工具,如果把构建ASP.NET网站的必备工具 ...
- 1000多个项目中的十大JavaScript错误以及如何避免
通过统计数据库中的1000多个项目,我们发现在 JavaScript 中最常出现的错误有10个.下面会向大家介绍这些错误发生的原因以及如何防止. 对于这些错误发生的次数,我们是通过收集的数据统计得出的 ...
随机推荐
- samba安装应用实例-2
应用实例: 先安装samba软件,yum install -y samba1.需求:共享一个目录,使用用户名和密码登录才可以访问,要求可读可写.(1)首先打开samba配置文件/etc/samba/s ...
- 阶段3 2.Spring_02.程序间耦合_8 工厂模式解耦的升级版
遍历枚举 改造获取的方法,这样获取的对象就是单例模式 再次运行测试程序 对象只有一个实例的情况下对i这个值进行了反复的操作.当多个人活着多线程在使用时.这就会出现类成员变量由于第一个人的修改.后面看到 ...
- Professional JavaScript for Web Developers P224-P225
然后第二段代码执行过程中,有1个global variabe object,1个createFunction activation object,10个anonymous function1 acti ...
- java:Oracle(级联删除,左右内外交叉自然连接,子查询,all,any,in)
1.级联删除: -- 级联删除:裁员,公司倒闭 -- 级联删除(cascade),设置为null(setnull),放任不管(No action) -- cascade:(以一对多为例)如果删除多的一 ...
- C#使用NPOI读写excel
本帖内容来自网络+自己稍作整理,已找不到原贴,侵删 个人比较习惯用NPOI操作excel,方便易理解.在宇宙第一IDE(笑)——VS2017中插入NPOI就很方便: 首先安装NPOI: 然后在.cs文 ...
- unity shader 波动圈
c# //////////////////////////////////////////// // CameraFilterPack - by VETASOFT 2018 ///// /////// ...
- pandas的.columns和.index
可以通过.columns和.index着两个属性返回数据集的列索引和行索引 设data是pandas的一个DataFram类型的数据集. 则data.index返回一个index类型的行索引列表,da ...
- Linux系统基础知识整理(一)
本文来自于: https://www.cnblogs.com/hafiz/p/6686187.html#4196989 一.说明 本篇文章,我将结合自己的实践以及简介,来对linux系统做一个直观清晰 ...
- JS 截取字符的方法
substr() 方法 substr() 方法可在字符串中抽取从 start 下标开始的指定数目的字符. stringObject.substr(start,length) start:必需.要抽取的 ...
- SpringBoot启动时 提示没有主清单属性 MANIFEST
SpringBoot启动时 提示没有主清单属性 MANIFEST <?xml version="1.0" encoding="UTF-8"?> &l ...