[CSP-S模拟测试]:涂色游戏(DP+组合数+矩阵快速幂)
题目描述
小$A$和小$B$在做游戏。
他们找到了一个$n$行$m$列呈网格状的画板。小$A$拿出了$p$支不同颜色的画笔,开始在上面涂色。看到小$A$涂好的画板,小$B$觉得颜色太单调了,于是把画板擦干净,希望涂上使它看起来不单调的颜色(当然,每个格子里只能涂一种颜色)。小$B$想知道一共有多少种不单调的涂色方案。我们定义一个涂色方案是不单调的,当且仅当任意相邻两列都出现了至少$q$种颜色。
输入格式
一行四个整数$n,m,p,q$,意义如题中所述。
输出格式
一行一个整数,表示不单调的涂色方案数模$998244353$的值。
样例
样例输入:
2 3 3 3
样例输出:
162
数据范围与提示
对于$20\%$的数据:$n\times m\leqslant 15,q\leqslant p\leqslant 3$
对于另外$20\%$的数据:$n\leqslant 7,m\leqslant 100,p=q=2$
对于另外$30\%$的数据:$n\leqslant 100,m\leqslant 1,000,q\leqslant p\leqslant 100$
对于$100\%$的数据:$n\leqslant 100,m\leqslant {10}^9 ,q\leqslant p\leqslant 100$
题解
首先,明确题意,不能不涂(也是被这个我并没有看出来的条件坑死了……)
静观数据范围,显然是矩阵快速幂。
那么,我们现在思考如何构建转移矩阵。
先把矩阵搁在一边,考虑$DP$,设$f[i][j]$表示对于一列,选到了第$i$行的格子,恰好涂了$j$种颜色的方案数,直接给出式子:
$$f[i][j]=f[i-1][j-1]\times (p-(j-1))+f[i-1][j]\times j$$
前半部分的转移即为又选了一个新的,那么我就要在这么多的颜色中再选一个;后半部分相当于我又从原来的$j$中颜色中选了一种涂在了这里。
那么,我们在设$g[j]$表示对于一列,选了$j$种颜色的方案数,那么根据第二类斯特林数(类比将$n$个有区别的小球放进$m$个没有区别的盒子,每个盒子至少放一个小球),一列中涂上每种$j$元颜色集合的颜色的方案数就是$\frac{g[j]}{C_p^j}$。
那么,我们对于这一列用了$j$元集合,下一列要用$k$元集合,则方案数为:
$$\sum \limits_{x=\max(q,j,k)}^{\min(p,j+k)}C_j^{j+k-x}C_{p-i}^{x-j}$$
解释一下上式,考虑两个极端情况,$\alpha.j\cup k=\varnothing$,$\beta.j\subset k\ or\ k\subset j$,这也是上式的上下线;再来理解组合数,因为$j$和$k$会有交集,所以前一个组合数就是交集,而第二个就是交集以外的。
现在,我们令:
$$trans[j][k]=\frac{g[j]}{C_p^j}\sum \limits_{x=\max(q,j,k)}^{\min(p,j+k)}C_j^{j+k-x}C_{p-i}^{x-j}$$
那么,$dp[i][k]=dp[i-1][j]\times [j][k]$,$dp[1][j]=g[j]$。
这样我们就可以拿到$70$分了。
观察式子,可以用矩阵快速幂快速转移。
时间复杂度:$\Theta(n^3\log m)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
int n,m,p,q;
long long C[1001][1001],g[101][101];
long long wzc[101][101],ans[101][101],flag[101][101];
void matrix1()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
flag[i][j]=ans[i][j];
ans[i][j]=0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ans[i][j]=(ans[i][j]+flag[i][k]*wzc[k][j]%mod)%mod;
}
void matrix2()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
flag[i][j]=wzc[i][j];
wzc[i][j]=0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
wzc[i][j]=(wzc[i][j]+flag[i][k]*flag[k][j]%mod)%mod;
}
void pre_work()
{
g[0][0]=C[0][0]=1;
for(int i=1;i<=100;i++)
{
C[i][0]=ans[i][i]=1;
for(int j=1;j<=i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&p,&q);
pre_work();m--;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=j*(g[i-1][j]+g[i-1][j-1])%mod;
for(int j=1;j<=p;j++)
for(int k=1;k<=p;k++)
{
for(int x=max(max(q,j),k);x<=min(p,j+k);x++)
wzc[j][k]=(wzc[j][k]+C[j][j+k-x]*C[p-j][x-j]%mod)%mod;
wzc[j][k]=wzc[j][k]*g[n][k]%mod;
}
while(m)
{
if(m&1)matrix1();
matrix2();
m>>=1;
}
for(int i=1;i<=p;i++)
for(int j=1;j<=p;j++)
ans[0][0]=(ans[0][0]+ans[i][j]*C[p][i]%mod*g[n][i]%mod)%mod;
printf("%lld",ans[0][0]);
return 0;
}
rp++
[CSP-S模拟测试]:涂色游戏(DP+组合数+矩阵快速幂)的更多相关文章
- 【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】
题意 题目给出m(m<=10)个仅仅由A,T,C,G组成的单词(单词长度不超过10),然后给出一个整数n(n<=2000000000),问你用这四个字母组成一个长度为n的长文本,有多少种组 ...
- CF1151F Sonya and Informatics(概率期望,DP,矩阵快速幂)
明明是水题结果没切掉……降智了…… 首先令 $c$ 为序列中 $0$ 的个数,那么排序后序列肯定是前面 $c$ 个 $0$,后面 $n-c$ 个 $1$. 那么就能上 DP 了.(居然卡在这里……) ...
- [CSP-S模拟测试]:长寿花(DP+组合数)
题目描述 庭院里有一棵古树.圣诞节到了,我想给古树做点装饰,给他一个惊喜.他会不会喜欢呢?这棵树可以分为$n$层,第$i$层有$a_i$个防治装饰品的位置,有$m$种颜色的装饰品可供选择.为了能让他喜 ...
- Gym 100952H&&2015 HIAST Collegiate Programming Contest H. Special Palindrome【dp预处理+矩阵快速幂/打表解法】
H. Special Palindrome time limit per test:1 second memory limit per test:64 megabytes input:standard ...
- BZOJ 1444 有趣的游戏(AC自动机+矩阵快速幂)
真的是很有趣的游戏... 对每个单词构建好AC自动机后,由于单词都是相同长度的且不同,所以不会出现互相为子串的形式. 那么我们对AC自动机上的节点构建转移矩阵.对于每个单词末尾的节点.该节点的出边仅仅 ...
- [hdu5411 CRB and Puzzle]DP,矩阵快速幂
题意:给一个有向图,从任意点开始,最多走m步,求形成的图案总数. 思路:令dp[i][j]表示走j步最后到达i的方法数,则dp[i][j]=∑dp[k][j-1],其中k表示可以直接到达i的点,答案= ...
- 51nod 1835 - 完全图 - [dp][组合数公式][快速幂]
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1835 基准时间限制:1 秒 空间限制:131072 KB ...
- bzoj2004 矩阵快速幂优化状压dp
https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...
- 联赛模拟测试5 涂色游戏 矩阵优化DP
题目描述 分析 定义出\(dp[i][j]\)为第\(i\)列涂\(j\)种颜色的方案数 然后我们要解决几个问题 首先是求出某一列涂恰好\(i\)种颜色的方案数\(d[i]\) 如果没有限制必须涂\( ...
随机推荐
- Jmeter从数据库中读取数据
Jmeter从数据库中读取数据 1.测试计划中添加Mysql Jar包 2.添加线程组 3.添加 jdbc connection configuration 4.添加JDBC Request,从数据库 ...
- 应用安全-Web安全-越权漏洞整理
login->register GetPhone->GetPasswd GetPwd->GetPassword 遍历https://xx.com/contacts/new?user_ ...
- 高级软件工程第二次作业:随机生成N个不重复的已解答完毕的数独棋盘
#include <stdio.h> #include "SuduCheck.h" ][],int i,int j,int k) //判断是否可以将第i行.第j列的数设 ...
- SQL常用语句之数据库的创建、删除以及属性的修改-篇幅1
本篇文章主要总结了SQL Server 语句的使用和一些基础知识,因为目前我也正在学习,所以总结一下. 要使用数据库语句,首先就要知道数据库对象的结构: 通常情况下,如果不会引起混淆,可以直接使用对象 ...
- python中map函数和reduce函数的区别
①从参数方面来讲:map()函数: map()包含两个参数,第一个是参数是一个函数,第二个是序列(列表或元组).其中,函数(即map的第一个参数位置的函数)可以接收一个或多个参数.reduce()函数 ...
- DS-哈希表浅析
1.哈希表 2.哈希函数 3.哈希冲突 哈希表 哈希表是一种按key-value存储的数据结构,也称散列表. 之前的数组.树和图等等查找一个值时都要与结构中的值相比较,查找的效率取决于比较的次数. 而 ...
- Linux的mysql部署
1. 先输入代码yum install wget -y才可以做后面的 2.下载并安装MySQL官方的 Yum Repository 代码: wget -i -c http://dev.mysql ...
- 解决Maven项目BindingException异常
org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.offcn.mybatis.m ...
- How to exploit the x32 recvmmsg() kernel vulnerability CVE 2014-0038
http://blog.includesecurity.com/2014/03/exploit-CVE-2014-0038-x32-recvmmsg-kernel-vulnerablity.html ...
- spring 配置属性细节
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/qilixiang012/article/details/28233811 概要(红色为上一篇所讲,蓝 ...