裸二分图匹配

 /*--------------------------------------------------------------------------------------*/

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map> //debug function for a N*M array
#define debug_map(N,M,G) printf("\n");for(int i=0;i<(N);i++)\
{for(int j=;j<(M);j++){\
printf("%d",G[i][j]);}printf("\n");}
//debug function for int,float,double,etc.
#define debug_var(X) cout<<#X"="<<X<<endl;
#define LL long long
const int INF = 0x3f3f3f3f;
const LL LLINF = 0x3f3f3f3f3f3f3f3f;
/*--------------------------------------------------------------------------------------*/
using namespace std; int N,M,T,t;
const int maxn = ;
vector <int> G[maxn];
int uN;
int Mx[maxn],My[maxn];
int dx[maxn],dy[maxn];
int dis;
bool used[maxn];
bool SearchP()
{
queue<int> Q;
dis = INF;
memset(dx,-,sizeof dx);
memset(dy,-,sizeof dy);
for(int i=;i<=uN;i++)
{
if(Mx[i] == -)
{
Q.push(i);
dx[i] = ;
}
}
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(dx[u] > dis) break;
int sz = G[u].size();
for(int i=;i<sz;i++)
{
int v = G[u][i];
if(dy[v] == -)
{
dy[v] = dx[u] + ;
if(My[v] == -) dis = dy[v];
else
{
dx[My[v]] = dy[v] + ;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
bool DFS(int u)
{
int sz = G[u].size();
for(int i=;i<sz;i++)
{
int v = G[u][i];
if(!used[v] && dy[v] == dx[u]+)
{
used[v] = true;
if(My[v] != - && dy[v] == dis) continue;
if(My[v] == - || DFS(My[v]))
{
My[v] = u;
Mx[u] = v;
return true;
}
}
}
return false;
} int MaxMatch()
{
int res = ;
memset(Mx,-,sizeof Mx);
memset(My,-,sizeof My);
while(SearchP())
{
memset(used,false,sizeof used);
for(int i=;i<=uN;i++) if(Mx[i] == - && DFS(i))
res++;
}
return res/;
} typedef pair<int,int> point;
vector <point> gst;
int v[maxn]; int main()
{
scanf("%d",&T);
int cas = ;
while(T--)
{
scanf("%d%d",&t,&N);
for(int i=;i<maxn;i++) G[i].clear(); gst.clear();
for(int i=,x,y,s;i<=N;i++)
{
scanf("%d%d%d",&x,&y,&s);
gst.push_back(make_pair(x,y));
v[i] = s;
}
scanf("%d",&M);
uN = N+M;
for(int i=,x,y;i<=M;i++)
{
scanf("%d%d",&x,&y);
for(int g=;g<gst.size();g++)
{
if((x-gst[g].first)*(x-gst[g].first)+(y-gst[g].second)*(y-gst[g].second) <= t*v[g+]*t*v[g+])
{
G[g+].push_back(i+N);
G[i+N].push_back(g+);
//printf("link:[%d,%d]\n",g+1,i+N);
}
}
}
printf("Scenario #%d:\n%d\n\n",++cas,MaxMatch());
}
}

HDU2389-Rain on your Parade-二分图匹配-ISAP的更多相关文章

  1. hdu2389 Rain on your Parade 二分图匹配--HK算法

    You’re giving a party in the garden of your villa by the sea. The party is a huge success, and every ...

  2. HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法

    题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)  ...

  3. hdu-2389.rain on your parade(二分匹配HK算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  4. Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)

    题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...

  5. Hdu2389 Rain on your Parade (HK二分图最大匹配)

    Rain on your Parade Problem Description You’re giving a party in the garden of your villa by the sea ...

  6. BZOJ.3546.[ONTAK2010]Life of the Party(二分图匹配 ISAP)

    题目链接 题意:求哪些点一定在最大匹配中. 这儿写过,再写一遍吧. 求哪些点不一定在最大匹配中.首先求一遍最大匹配,未匹配点当然不一定在最大匹配中. 设一个未匹配点为A,如果存在边A-B,且存在匹配边 ...

  7. HDU2389:Rain on your Parade(二分图最大匹配+HK算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  8. HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)

    HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...

  9. HDU 2389 Rain on your Parade(二分匹配,Hopcroft-Carp算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  10. HDU2389(二分图匹配Hopcroft-Carp算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

随机推荐

  1. 基于分布式、服务化的maven项目文件规划

    引言 此文不是纯粹介绍maven概念,而是介绍一个具体的maven项目文件规划 这个规划可能适合于研发比较复杂的业务,这些业务有分布式和服务化的需要. 这个规划能够解决因为分布式和服务化要求而引起的项 ...

  2. JavaScript Patterns 5.7 Object Constants

    Principle Make variables shouldn't be changed stand out using all caps. Add constants as static prop ...

  3. 【JSP】JSP基础学习记录(一)—— 基础介绍以及3个编译指令

    序: 从实现到现在一直是以.net为主,但偶尔也会参与一些其他语言的项目.最近需要对一个Java Web项目进行二次开发,一直没学习过JSP所以买了几本书自学试试.参考资料为<轻量级Java E ...

  4. H264解码学习-2015.04.16

    今天看了不少,却感觉收获寥寥. 1.H264相关知识 因为RTP协议发过来的数据已经经过了H264编码,所以这边需要解码.补充一下H264的相关知识. 与以往的视频压缩标准相比,H.264 视频压缩标 ...

  5. eclipse常用配置

    一. 手动方式安装svn插件 1. 根据本地的svn客户端的版本,到http://subclipse.tigris.org/ 下载eclipse对应版本的svn插件包 注:装eclipse里面的svn ...

  6. vsftpd 配置:chroot_local_user与chroot_list_enable详解

    chroot_local_user,chroot_list_enable,chroot_list_file三个配置项的解释: chroot_local_user #是否将所有用户限制在主目录,YES为 ...

  7. 基于.net开发chrome核心浏览器【五】

    一:本篇将解决的问题 本章主要为了解决一下几个问题: 1.JsDialog的按钮错位的问题 我们开发出的浏览器,在有些操系统上调用alert,confirm之类的对话框时,确定和取消按钮会出现错位的情 ...

  8. 大话设计模式C++版——建造者模式

    日常做菜的过程中,经常会有忘记放盐或者放2次盐的经历,最后导致好好的一盘菜让大家无从下口.这个时候就需要用到建造者模式来规范炒菜的过程,来保证每一道菜都会经历加油.放食物.放盐.放味精这4道基本的工序 ...

  9. 手机打开PDF文档中文英文支持(乱码问题)解决攻略

    电子书的优点很多,随时随地阅读,无论白天黑夜走路坐车都能阅读:想确认一下某句话是不是这本书里的,搜索一下就可以知道:搬家也不用发愁,几万本书带在身上,依然轻松步行.我买了一台平板主要动因就是为了看书, ...

  10. MyBatis使用总结+整合Spring

    MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis .20 ...