poj 3463 最短路与次短路的方案数求解
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 8968 | Accepted: 3139 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
Source
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
//#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll M22OD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
struct node
{
int v,next,w;
}edge[];
int d[][],e,n,m;
int cnt[][];
int head[];
bool vis[][];
void init()
{
e=;
memset(head,,sizeof(head));
}
void insert(int x,int y,int w)
{
e++;
edge[e].v=y;
edge[e].w=w;
edge[e].next=head[x];
head[x]=e;
}
int dijkstra(int s,int t)
{
int flag,u;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++){
d[i][]=d[i][]=INF;
}
cnt[s][]=;
d[s][]=;
for(int i=;i<=*n;i++)
{
int mini=INF;
for(int j=;j<=n;j++)
{
if(!vis[j][]&&d[j][]<mini)
{
u=j;
flag=;
mini=d[j][];
}
else if(!vis[j][]&&d[j][]<mini)
{
u=j;
flag=;
mini=d[j][];
}
}
if(mini==INF) break;
vis[u][flag]=;
for(int j=head[u];j;j=edge[j].next)
{
int w=edge[j].w;
int v=edge[j].v;
if(d[v][]>mini+w){
d[v][]=d[v][];
cnt[v][]=cnt[v][];
d[v][]=mini+w;
cnt[v][]=cnt[u][flag];
}
else if(d[v][]==mini+w) cnt[v][]+=cnt[u][flag];
else if(d[v][]>mini+w){
d[v][]=mini+w;
cnt[v][]=cnt[u][flag];
}
else if(d[v][]==mini+w) cnt[v][]+=cnt[u][flag];
}
}
int ans=;
if(d[t][]==d[t][]+) ans=cnt[t][]+cnt[t][];
else ans=cnt[t][];
return ans;
}
int main()
{
int s,t, T,x,y,w;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d %d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&w);
insert(x,y,w);
}
scanf("%d %d",&s,&t);
printf("%d\n",dijkstra(s,t));
}
return ;
}
poj 3463 最短路与次短路的方案数求解的更多相关文章
- poj 3463/hdu 1688 求次短路和最短路个数
http://poj.org/problem?id=3463 http://acm.hdu.edu.cn/showproblem.php?pid=1688 求出最短路的条数比最短路大1的次短路的条数和 ...
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- poj 3463 Sightseeing——次短路计数
题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- POJ 3463 有向图求次短路的长度及其方法数
题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- poj 3463 最短路+次短路
独立写查错不能,就是维护一个次短路的dist 题意:给定一个有向图,问从起点到终点,最短路+比最短路距离长1的路的个数. Sample Input25 81 2 31 3 21 4 52 3 12 5 ...
- poj 3463 次短路
题意:给定一个有向图,问从起点到终点,最短路+比最短路距离长1的路的个数. 当年数据结构课程设计用A*做过,现在忘光了,2333 #include<stdio.h> #include< ...
- POJ 3463 Sightseeing (次短路)
题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...
随机推荐
- Linux -- 文件统计常用命令
标签(空格分隔): Linux sort -- 文件内排序命令 sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次比较其ASCII码. 按每行升序排序: sort seq.tx ...
- 正则神器,RegexBuddy
解释 转换 测试匹配 使用帮助 正则图书馆 转为PHP案例 功能强大,虽然是英文的!挺不错的~
- HTML中的target(_self,_blank)用法总结
HTML中的target(_self,_blank)用法总结 最近一个项目,多次遇到target='_self', target='_blank'的用法, 再次总结一下: 1.<a>标签 ...
- 关于JAVA EE项目在WEB-INF目录下的jsp页面如何访问WebRoot中的CSS和JS文件
找了这么久资料,总算解决了 感谢博客园:http://www.cnblogs.com/xsht/p/5275081.html 感谢百度:http://zhidao.baidu.com/link?url ...
- 第九章 企业项目开发--分布式缓存Redis(1)
注意:本章代码将会建立在上一章的代码基础上,上一章链接<第八章 企业项目开发--分布式缓存memcached> 1.为什么用Redis 1.1.为什么用分布式缓存(或者说本地缓存存在的问题 ...
- Windows Store App 插值动画
插值动画支持DoubleAnimation.ColorAnimation和PointAnimation类型的动画.其中比较常用的是DoubleAnimation动画,它可以用来控制界面元素的Doubl ...
- BinaryHeap Java实现
public class BinaryHeap<AnyType extends Comparable<? super AnyType>> { private static fi ...
- iOS开发UI篇—使用picker View控件完成一个简单的选餐应用
iOS开发UI篇—使用picker View控件完成一个简单的选餐应用 一.实现效果 说明:点击随机按钮,能够自动选取,下方数据自动刷新. 二.实现思路 1.picker view的有默认高度为162 ...
- jquery 动态生成html后click事件不触发原因
转自:http://www.iam3y.com/html/560.html 最近在做一个项目的时候,遇到动态加载微博内容,然后点击“展开评论”后获取该微博的所有评论.这里使用了动态加载的<spa ...
- mongo
最近一直在用mongodb,有时候会需要用到统计,在网上查了一些资料,最适合用的就是用aggregate,以下介绍一下自己运用的心得.. 别人写过的我就不过多描述了,大家一搜能搜索到N多一样的,我写一 ...