Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8968   Accepted: 3139

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, BN, AB and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ S, FN and SF: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

Source

题意:
题解:
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
//#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
#define A first
#define B second
const int mod=;
const int MOD1=;
const int MOD2=;
const double EPS=0.00000001;
typedef __int64 ll;
const ll M22OD=;
const int INF=;
const ll MAX=1ll<<;
const double eps=1e-;
const double inf=~0u>>;
const double pi=acos(-1.0);
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
struct node
{
int v,next,w;
}edge[];
int d[][],e,n,m;
int cnt[][];
int head[];
bool vis[][];
void init()
{
e=;
memset(head,,sizeof(head));
}
void insert(int x,int y,int w)
{
e++;
edge[e].v=y;
edge[e].w=w;
edge[e].next=head[x];
head[x]=e;
}
int dijkstra(int s,int t)
{
int flag,u;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++){
d[i][]=d[i][]=INF;
}
cnt[s][]=;
d[s][]=;
for(int i=;i<=*n;i++)
{
int mini=INF;
for(int j=;j<=n;j++)
{
if(!vis[j][]&&d[j][]<mini)
{
u=j;
flag=;
mini=d[j][];
}
else if(!vis[j][]&&d[j][]<mini)
{
u=j;
flag=;
mini=d[j][];
}
}
if(mini==INF) break;
vis[u][flag]=;
for(int j=head[u];j;j=edge[j].next)
{
int w=edge[j].w;
int v=edge[j].v;
if(d[v][]>mini+w){
d[v][]=d[v][];
cnt[v][]=cnt[v][];
d[v][]=mini+w;
cnt[v][]=cnt[u][flag];
}
else if(d[v][]==mini+w) cnt[v][]+=cnt[u][flag];
else if(d[v][]>mini+w){
d[v][]=mini+w;
cnt[v][]=cnt[u][flag];
}
else if(d[v][]==mini+w) cnt[v][]+=cnt[u][flag];
}
}
int ans=;
if(d[t][]==d[t][]+) ans=cnt[t][]+cnt[t][];
else ans=cnt[t][];
return ans;
}
int main()
{
int s,t, T,x,y,w;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d %d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&w);
insert(x,y,w);
}
scanf("%d %d",&s,&t);
printf("%d\n",dijkstra(s,t));
}
return ;
}

poj 3463 最短路与次短路的方案数求解的更多相关文章

  1. poj 3463/hdu 1688 求次短路和最短路个数

    http://poj.org/problem?id=3463 http://acm.hdu.edu.cn/showproblem.php?pid=1688 求出最短路的条数比最短路大1的次短路的条数和 ...

  2. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  3. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  4. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  5. POJ 3463 有向图求次短路的长度及其方法数

    题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...

  6. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  7. poj 3463 最短路+次短路

    独立写查错不能,就是维护一个次短路的dist 题意:给定一个有向图,问从起点到终点,最短路+比最短路距离长1的路的个数. Sample Input25 81 2 31 3 21 4 52 3 12 5 ...

  8. poj 3463 次短路

    题意:给定一个有向图,问从起点到终点,最短路+比最短路距离长1的路的个数. 当年数据结构课程设计用A*做过,现在忘光了,2333 #include<stdio.h> #include< ...

  9. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

随机推荐

  1. Django ModelForm and Form

    django表单系统中,所有的表单类都作为django.forms.Form的子类创建,包括ModelForm 关于django的表单系统,主要分两种 基于django.forms.Form 基于dj ...

  2. Sqrt(x) - LintCode

    examination questions Implement int sqrt(int x). Compute and return the square root of x. Example sq ...

  3. chrome的timeline中stalled问题解析

    原文地址 :http://foio.github.io/chrome-stalled/ 在公司国做一个运营活动,上线后PM总是抱怨访问速度过慢,影响运营效果.然而从前端的角度来说我已经做了如下优化: ...

  4. xshell 终端窗口目录显示为深蓝色的不易分辨问题

    xshell更改终端窗口目录展示深蓝色的不易分辨 经常使用xshell远程连接服务器,使用ls命令,目录的颜色都是深蓝色, 如果终端窗口背景颜色是黑色的(对眼睛较好的黑色的背景色,大家一般都选择黑色背 ...

  5. sbrk与brk的使用小例子

    sbrk() 和 brk() - Unix的系统函数   sbrk()和brk() 系统的底层会维护一个位置,通过位置的移动完成内存的分配和回收.映射内存时 以一个内存页作为基本单位.   void* ...

  6. vi/vim基本使用方法

    vi/vim 基本使用方法本文介绍了vi (vim)的基本使用方法,但对于普通用户来说基本上够了!i/vim的区别简单点来说,它们都是多模式编辑器,不同的是vim 是vi的升级版本,它不仅兼容vi的所 ...

  7. iOS9 collectionView新特性

    近日因为系统升级导致xcode6.系列版本出现bug,于是开始使用xcode7.在使用之余突然想到collectionView在iOS9中发布了一个可以移动cell的新特性,就尝试着将其实现,无奈ap ...

  8. linux详细redis安装和php中redis扩展

    第一部分:安装redis 希望将redis安装到此目录 1 /usr/local/redis 希望将安装包下载到此目录 1 /usr/local/src 那么安装过程指令如下: 1 2 3 4 5 6 ...

  9. Python 日期格式转换

    经常需要爬取网站上的时间信息,不同的网站又有不同的日期显示方式.而我需要将日期格式转化为一种特定的格式,所以为了简便和学习,记录下各种不同的日期格式转换. 日期格式化符号: %y :两位数的年份表示( ...

  10. jq知识总结

    jQuery   jQuery基本选择器: id选择器     $("#div1") class选择器   $(".div1") 元素选择器   $(" ...