题目描述 Description

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数

条件:  1.P,Q是正整数

2.要求P,Q以x0为最大公约数,以y0为最小公倍数.

试求:满足条件的所有可能的两个正整数的个数.

输入描述 Input Description

二个正整数x0,y0

输出描述 Output Description

满足条件的所有可能的两个正整数的个数

样例输入 Sample Input

3 60

样例输出 Sample Output

4

分析:

p和q的最大公约数(gcd)是x,最小公倍数(lcm)是y

那么p*q=x*y

设p=x*i,q=x*j,i和j互质

则p*q=(x*i)*(x*j)=x*y,那就有i*j=y/x

我们可以枚举i,从i=1开始,直到i*i>y/x

如果i是y/x的因子

然后j=(y/x)/i

再判断i和j是否互质

因为每次得到的两个数中比较小的就是i,比较大的数是j,i是小于根号(y/x)的,j就是大于根号(y/x)因此不会重复计算,那算到一次,答案就累加2。

代码:

#include<iostream>
using namespace std; int gcd(int x,int y)
{
return(x%y==?y:gcd(y,x%y));
}
int main()
{
int x,y,ans=;
cin>>x>>y;
if(y%x){
cout<<;
return ;
}
y=y/x;
for(int i=; i*i<=y; i++)
{
if(y%i==&&gcd(i,y/i)==)
ans+=;
}
cout<<ans<<endl;
}

  

【codevs1012】最大公约数和最小公倍数的更多相关文章

  1. 求N个数的最大公约数和最小公倍数(转)

    除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表 ...

  2. Java程序设计之最大公约数和最小公倍数

    题目:输入两个正整数number1和number2,求其最大公约数和最小公倍数. 算法:较大数和较小数取余,较小数除余数,一直到余数为0时,为最大公约数(辗转相除法):最大公倍数numbe1*numb ...

  3. 辗转相除法求最大公约数和最小公倍数【gcd】

    要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } ...

  4. PAT - 基础 - 最大公约数和最小公倍数

    题目: 本题要求两个给定正整数的最大公约数和最小公倍数. 输入格式: 输入在一行中给出2个正整数M和N(<=1000). 输出格式: 在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1 ...

  5. c 求两个整数的最大公约数和最小公倍数

    //求最大公约数是用辗转相除法,最小公倍数是根据公式 m,n 的 最大公约数* m,n最小公倍数 = m*n 来计算 #include<stdio.h> //将两个整数升序排列 void ...

  6. c语言求最大公约数和最小公倍数

    求最大公约数和最小公倍数 假设有两个数a和b,求a,b的最大公约数和最小公倍数实际上是一个问题,得出这两个数的最大公约数就可以算出它们的最小公倍数. 最小公倍数的公式是 a*b/m m为最大公约数 因 ...

  7. Java经典案例之-“最大公约数和最小公倍数”

    /** * 描述:输入两个正整数m和n,求其最大公约数和最小公倍数.(最大公约数:最大公约数, * 也称最大公因数.最大公因子,指两个或多个整数共有约数中最大的一个.) * (最小公倍数:几个数共有的 ...

  8. 求m和n的最大公约数和最小公倍数

    题目:输入两个正整数m和n,求其最大公约数和最小公倍数. 做这道题时,特意去查看了一下什么是最大公约数和最小公倍数. 后来直接去看了求解的思想,相信到企业中不会要求你闭门造车,若已有先例,可以研究之后 ...

  9. HDU 2503 a/b + c/d(最大公约数与最小公倍数,板子题)

    话不多说,日常一水题,水水更健康!┗|`O′|┛ 嗷~~ a/b + c/d Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768 ...

  10. Java求最大公约数和最小公倍数

    最大公约数(Greatest Common Divisor(GCD)) 基本概念 最大公因数,也称最大公约数.最大公因子,指两个或多个整数共有约数中最大的一个.a,b的最大公约数记为(a,b),同样的 ...

随机推荐

  1. Zookeeper的学习材料

    https://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/ https://www.zhihu.com/question/351 ...

  2. NSDate 哪些事

    .什么是时间戳? 时间戳是自 1970 年 1 月 1 日(00:00:00 GMT)至当前时间的总秒数. 2.NSDate,时间戳,NSString 之间的转换 //string 转 date + ...

  3. HTML 学习笔记 CSS(列表)

    CSS列表属性允许你放置 改变列表项标志 或者将图像作为列表项标志. CSS列表 从某中意义上讲 不是描述性的文本的任何内容都可以认为是列表.人口普查.太阳系.家谱.参观菜单,甚至你的所有朋友都可以表 ...

  4. JavaScript Math 对象

    JavaScript Math 对象 Math 对象 Math 对象用于执行数学任务. Math 对象并不像 Date 和 String 那样是对象的类,因此没有构造函数 Math(). 语法 var ...

  5. CGPoint、CGSize、CGRect and UIView

    首先要弄懂几个基本的概念. 一)三个结构体:CGPoint.CGSize.CGRect 1. CGPoint /* Points. */ struct CGPoint { CGFloat x; CGF ...

  6. Linux shell基础

    shell是核心程序kernel之外的指令解析器,是一个程序,同事是一种命令语言和程序设计语言 --shell是命令解析器,用户输入命令,它去解析. shell类型 ash,bash,ksh,csh, ...

  7. Ros集成开发环境配置

    参考资料: http://blog.csdn.net/yangziluomu/article/details/50848357 ROS使用IDE Eclipse http://blog.csdn.ne ...

  8. VMware Fusion 中如何复制centos/linux虚拟机

    今天想在mac本上,弄几个centos的虚拟机,尝试搭建hadoop的全分布环境.一台台虚拟机安装过去太麻烦了,想直接将现有的centos虚拟机复制几份完事,但是复制出来的虚拟机无法上网,折腾了一翻, ...

  9. 前端见微知著JavaScript基础篇:你所不知道的apply, call 和 bind

    在我的职业生涯中,很早就已经开始使用JavaScript进行项目开发了.但是一直都是把重心放在了后端开发方面,前端方面鲜有涉及.所以造成的一个现象就是:目前的前端知识水平,应付一般的项目已然是足够的, ...

  10. 机械大楼电梯控制项目软件 -- github团队组建

    目前在Github网站上建立了机械大楼电梯控制项目软件的软件仓库(Repository),提供了软件功能需求说明文档和Automation Studio程序模板.地址为 https://github. ...