51Nod1868 彩色树 虚树
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1868.html
题目传送门 - 51Nod1868
题意
给定一颗 $n$个点的树,每个点一个 $[1,n]$ 的颜色。设 $g(x,y)$ 表示 $x$ 到 $y$ 的树上路径上有几种颜色。
对于一个长度为 $n$ 的排列 $P[1\cdots n]$ ,定义 $f(P)=\sum_{i=1}^{n-1}g(P_i,P_{i+1})$ 。
现在求对于 $n!$ 个排列,他们的 $f(P)$ 之和 对 $10^9+7$ 取模后的值。
题解
首先我们考虑每一个 $g(x,y)$ 对于答案的贡献次数。
考虑捆绑法,把 $x$ 和 $y$ 看作一个整体,显然,它对答案的贡献次数为 $(n-1)!$ 。
于是答案就是
$$2\times (n-1)!\sum_{x=1}^{n}\sum_{y=x+1}^{n} g(x,y)$$
前面的 $2\times (n-1)!$ 很好办,现在主要要求后面的那个。
我们考虑对于每一个颜色分别处理。我们需要求出每一个颜色对答案的贡献。
记 $f(c,x,y)$ 表示路径 $x$~$y$ 上,如果有颜色 $c$ ,那么值为 $1$ ,否则为 $0$ 。则后面一半变成了:
$$\sum_{c=1}^{n}\sum_{x=1}^{n}\sum_{y=x+1}^{n} f(c,x,y)$$
确定一种颜色之后,后面的显然非常好求,直接一个树形dp 就差不多了。但是这样的时间复杂度是炸掉的。于是我们需要一个数据结构来优化——虚树。
建出虚树,然后我们注意一下细节,统计一下就可以了。
这里推荐一个写的比较详细的虚树学习笔记:https://www.k-xzy.xyz/archives/4476
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=200005,mod=1e9+7;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
struct Gragh{
static const int M=N*2;
int cnt,y[M],nxt[M],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g,t;
int n,c[N],Fac[N],Time=0,now_color,ans=0;
int dfn[N],depth[N],size[N],fa[N][18],sqrsum[N];
int dirson[N],tot[N],st[N],top;
vector <int> id[N];
LL calc(int x){
return 1LL*x*(x-1)/2;
}
void dfs(int x,int pre,int d){
dfn[x]=++Time,depth[x]=d,size[x]=1,fa[x][0]=pre,sqrsum[x]=0;
for (int i=1;i<18;i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for (int i=g.fst[x];i;i=g.nxt[i])
if (g.y[i]!=pre){
int y=g.y[i];
dfs(y,x,d+1);
size[x]+=size[y];
sqrsum[x]=(calc(size[y])+sqrsum[x])%mod;
}
}
int LCA(int x,int y){
if (depth[x]<depth[y])
swap(x,y);
for (int i=17;i>=0;i--)
if (depth[x]-(1<<i)>=depth[y])
x=fa[x][i];
if (x==y)
return x;
for (int i=17;i>=0;i--)
if (fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
bool cmp(int a,int b){
return dfn[a]<dfn[b];
}
void solve(int x){
int dx=dirson[x],sonsqr=tot[x]=0;
for (int k=t.fst[x];k;k=t.nxt[k]){
int y=t.y[k],&dy=dirson[y]=y;
for (int i=17;i>=0;i--)
if (depth[dy]-(1<<i)>depth[x])
dy=fa[dy][i];
solve(y);
tot[x]+=tot[y];
sonsqr=(calc(tot[y])+sonsqr)%mod;
}
if (c[x]==now_color){
tot[x]=size[x];
int xsqr=(calc(size[dx]-size[x])+sqrsum[x])%mod;
ans=(calc(size[dx])-xsqr+ans)%mod;
}
else {
ans=(calc(tot[x])-sonsqr+ans)%mod;
for (int i=t.fst[x];i;i=t.nxt[i]){
int y=t.y[i],v=size[dx]-tot[x]+tot[y]-size[dirson[y]];
ans=(1LL*tot[y]*v+ans)%mod;
}
}
}
int main(){
n=read();
for (int i=Fac[0]=1;i<=n;i++)
c[i]=read(),Fac[i]=1LL*Fac[i-1]*i%mod;
g.clear();
for (int i=1;i<n;i++){
int a=read(),b=read();
g.add(a,b);
g.add(b,a);
}
dfs(1,0,0);
for (int i=1;i<=n;i++)
id[i].clear();
for (int i=1;i<=n;i++)
id[c[i]].push_back(i);
t.clear();
for (int k=1;k<=n;k++){
if (id[k].size()<1)
continue;
sort(id[k].begin(),id[k].end(),cmp);
st[top=1]=1,t.fst[1]=0;
for (vector <int> :: iterator i=id[k].begin();i!=id[k].end();i++){
int x=*i;
if (x==1)
continue;
int lca=LCA(x,st[top]);
if (lca!=st[top]){
while (depth[st[top-1]]>depth[lca])
t.add(st[top-1],st[top]),top--;
if (st[top-1]!=lca)
t.fst[lca]=0,t.add(lca,st[top]),st[top]=lca;
else
t.add(lca,st[top--]);
}
t.fst[x]=0,st[++top]=x;
}
for (int i=1;i<top;i++)
t.add(st[i],st[i+1]);
now_color=k,dirson[1]=1;
solve(1);
}
printf("%d\n",2LL*(ans+mod)%mod*Fac[n-1]%mod);
return 0;
}
51Nod1868 彩色树 虚树的更多相关文章
- 仙人掌 && 圆方树 && 虚树 总结
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...
- [SDOI2018]战略游戏(圆方树+虚树)
喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...
- hihoCoder #1954 : 压缩树(虚树)
题意 有一棵 \(n\) 个节点且以 \(1\) 为根的树,把它复制成 \(m\) 个版本,有 \(q\) 次操作,每次对 \([l, r]\) 这些版本的 \(v\) 节点到根的路径收缩起来. 收缩 ...
- Codechef Sad Pairs——圆方树+虚树+树上差分
SADPAIRS 删点不连通,点双,圆方树 非割点:没有影响 割点:子树DP一下 有不同颜色,所以建立虚树 在圆方树上dfs时候 如果当前点是割点 1.统计当前颜色虚树上的不连通点对,树形DP即可 2 ...
- BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树
https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...
- BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)
题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...
- UOJ.87.mx的仙人掌(圆方树 虚树)(未AC)
题目链接 本代码10分(感觉速度还行..). 建圆方树,预处理一些东西.对询问建虚树. 对于虚树上的圆点直接做:对于方点特判,枚举其所有儿子,如果子节点不在该方点代表的环中,跳到那个点并更新其val, ...
- 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...
随机推荐
- class, extends和super es6语法
摘自https://www.cnblogs.com/queende7/p/8668497.html,谢谢博主的分享!
- 解决:angularjs radio默认选中失效问题
添加ng-model后checked="checked"失效,可见angularjs也不好,会失效html标准属性 解决:添加ng-checked="1" ...
- select+异步
IO多路复用是指内核一旦发现进程指定的一个或者多个IO条件准备读取,它就通知该进程.IO多路复用适用如下场合: 当客户处理多个描述符时(一般是交互式输入和网络套接口),必须使用I/O复用. 当一个客户 ...
- springmvc框架原理分析和简单入门程序
一.什么是springmvc? 我们知道三层架构的思想,并且如果你知道ssh的话,就会更加透彻的理解这个思想,struts2在web层,spring在中间控制,hibernate在dao层与数据库打交 ...
- Confluence 6 注册外部小工具
你可以从外部站点中注册小工具(Gadget)(例如 Jira 应用),你注册成功的小工具将会在 宏浏览器中显示出来,使用你 Confluence 站点的用户可以使用 Gadget Macro 来调用它 ...
- js操作数组元素
一, 删除数组指定的某个元素 首先可以给JS的数组对象定义一个函数,用于查找指定的元素在数组中的位置,即索引,代码为: Array.prototype.indexOf = function(val) ...
- 如何在PDF中添加水印,PDF添加水印技巧
PDF文件现在的使用很是普遍,不管是工作中还是学习中都会使用到PDF文件,制作一个PDF文件就很辛苦的,我们要是想把PDF文件中添加水印防止抄袭的时候应该要怎么做呢,其实吧PDF文件添加水印还挺简单的 ...
- hdu4044 依赖背包变形 好题!
由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...
- MySQL监控系统Lepus的搭建
现在流行的监控系统很多,选择一个合适自己的就可以了,例如Zabbix.Nagios:监控MySQL为主的有MySQLMTOP.Lepus.本文主要介绍快速部署lepus以及监控MySQL,因为作为DB ...
- Android定位元素与操作
一.常用识别元素的工具 uiautomator:Android SDK自带的一个工具,在tools目录下 monitor:Android SDK自带的一个工具,在tools目录下 Appium Ins ...