Expm 10_1 带负权值边的有向图中的最短路径问题
【问题描述】
对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环。
package org.xiu68.exp.exp10;
public class Exp10_1 {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[][] edges=new int[][]{
{0,10,0,4,1},
{0,0,0,0,0},
{0,-10,0,0,0},
{0,0,0,0,0},
{0,0,2,0,0}
};
MGraph m1=new MGraph(edges);
System.out.println(m1.bellmanFord(0));
}
}
class MGraph{
private int[][] edges; //有向图边集
private int vexNum; //顶点数目
private int[] dist; //源点到该顶点的距离
private int maxDistant; //表示距离无穷远
public MGraph(int[][] edges){
this.edges=edges;
this.vexNum=edges.length;
this.dist=new int[vexNum];
this.maxDistant=1000000;
}
public boolean bellmanFord(int start){
//初始化dist数组
for(int i=0;i<vexNum;i++){
dist[i]=maxDistant;
}
dist[start]=0;
for(int i=0;i<vexNum-1;i++){ //从源点到任何一个顶点的最短路径最多有n-1条边
boolean flag=false; //记录在本次循环中从源点到某个顶点是否有更短的路径
//遍历所有的边
for(int j=0;j<vexNum;j++){
for(int k=0;k<vexNum;k++){
if(edges[j][k]!=0 && dist[k]>dist[j]+edges[j][k]){
dist[k]=dist[j]+edges[j][k];
flag=true;
}
}
}
if(flag==false) //已经求得所有顶点的最短路径
break;
}
//本次循环检测是否有负环存在
//从源点到某个顶点有n条边,且路径更短,说明有负环存在
for(int i=0;i<vexNum;i++){
for(int j=0;j<vexNum;j++){
if(edges[i][j]!=0 && dist[j]>dist[i]+edges[i][j])
return false;
}
}
for(int i=0;i<vexNum;i++)
System.out.println(i+":"+dist[i]);
return true;
}
}
Expm 10_1 带负权值边的有向图中的最短路径问题的更多相关文章
- 图之单源Dijkstra算法、带负权值最短路径算法
1.图类基本组成 存储在邻接表中的基本项 /** * Represents an edge in the graph * */ class Edge implements Comparable< ...
- poj 3259 Wormholes 判断负权值回路
Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u Java ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
- Wormholes 最短路判断有无负权值
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- SPFA 最短路 带负权边的---- 粗了解
SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算. 算法大致流程是用一个队列来进行维护. 初始时将源加入队列 ...
- hdu 6201 transaction (最短路变形——带负权最长路)
题意: 给定n个城市的货物买卖价格, 然后给定n-1条道路,每条路有不同的路费, 求出从某两个城市买卖一次的最大利润. 利润 = 卖价 - (买价 + 路费) 样例数据, 最近是从第一个点买入, 第4 ...
- SPFA 求带负权的单源最短路
int spfa_bfs(int s) { ///s表示起点. queue <int> q; memset(d,0x3f,sizeof(d)); ///d数组中存下的就是最短路径(存在的话 ...
- HDU 6464.免费送气球-动态开点-权值线段树(序列中第first小至第second小的数值之和)(感觉就是只有一个状态的主席树) (“字节跳动-文远知行杯”广东工业大学第十四届程序设计竞赛)
免费送气球 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- Dijkstra算法为什么权值不能为负
Dijkstra算法当中将节点分为已求得最短路径的集合(记为S)和未确定最短路径的个集合(记为U),归入S集合的节点的最短路径及其长度不再变更,如果边上的权值允许为负值,那么有可能出现当与S内某点(记 ...
随机推荐
- git个人学习总结
什么是git 代码管理工具,分布式管理,每个人电脑都是一个完整的版本库.并且有中央服务器(gitHub,gitLab)提供代码交换修改 git基础概念 工作区:自己的项目(有一个隐藏目录 " ...
- Java时间转换的一个特性
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm"); Date codedat ...
- linux下安装好mysql后,登录时提示libgcc_s.so.1 must be installed for pthread_cancel to work
网上找了很多帖子,各说纷纭, 自己到https://centos.pkgs.org/下载对应版本的libgcc_s.so.1,使用rpm -ivh libgcc-4.8.5-16.el7.i686.r ...
- XXE攻防
一.XML基础知识 XML用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言.XML文档结构包括XML声明.DTD文档类型定义(可 ...
- java mongoTemplate的group统计
@Service public class MongoCountServiceImpl implements MongoCountService { @Autowired private MongoT ...
- Ubuntu 使用 Android Studio 编译 TensorFlow android demo
https://www.cnblogs.com/dyufei/p/8028218.html https://www.myboxlab.com/topic/detail/714ca2d405414f13 ...
- 关于SQL的over partition by 开窗语句在分页和统计中的使用总
CREATE TABLE OrderInfo( ID INT IDENTITY(1,1) PRIMARY KEY, CustomerID INT NULL, TotalMoney DECIMAL(18 ...
- 【Thymeleaf】浅谈Java模板引擎(带更新...)
什么是模板引擎 模板引擎(这里特指用于Web开发的模板引擎)是为了使用户界面与业务数据(内容)分离而产生的,它可以生成特定格式的文档,用于网站的模板引擎就会生成一个标准的HTML文档. 为什么要用模板 ...
- CentOS 7安装Redis
第一步:安装gcc依赖 先通过gcc -v是否有安装gcc,如果没有安装,执行命令 yum install -y gcc(yum install -y gcc-c++) 第二步:下载redis安装包 ...
- hibernate 嵌套事务
hibernate 嵌套事务,多线程调试.问题麻烦啊,后续有时间补全.