「HNOI2016」网络

我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的...

注意到对一个询问,我们可以二分答案

然后统计经过这个点大于当前答案的路径条数,如果这个路径条数等于大于当前答案的所有路径条数,那么这个答案是不行的。

关于链修改单点询问,可以树状数组维护dfs序,然后每次修改链去差分修改

然后把二分答案拿到整体二分上去就可以了


Code:

#include <cstdio>
#include <cctype>
#include <cmath>
#include <algorithm>
const int N=3e5+10;
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int dfn[N],low[N],dep[N],f[18][N],dfsclock;
int n,m,q,s[N],ans[N];
struct koito_yuu{int u,v,x,lca;}yuu[N],yuul[N],yuur[N];
void dfs(int now)
{
dfn[now]=++dfsclock;
dep[now]=dep[f[0][now]]+1;
for(int i=1;f[i-1][now];i++) f[i][now]=f[i-1][f[i-1][now]];
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=f[0][now])
f[0][v]=now,dfs(v);
low[now]=dfsclock;
}
int LCA(int x,int y)
{
if(dep[x]<dep[y]) std::swap(x,y);
for(int i=17;~i;i--)
if(dep[f[i][x]]>=dep[y])
x=f[i][x];
if(x==y) return x;
for(int i=17;~i;i--)
if(f[i][x]!=f[i][y])
x=f[i][x],y=f[i][y];
return f[0][x];
}
void modify(int x,int d){while(x&&x<=n)s[x]+=d,x+=x&-x;}
int query(int x){int ret=0;while(x)ret+=s[x],x-=x&-x;return ret;}
void modi(int u,int v,int lca,int d)
{
modify(dfn[u],d);
modify(dfn[v],d);
modify(dfn[lca],-d);
modify(dfn[f[0][lca]],-d);
}
int qry(int u)
{
return query(low[u])-query(dfn[u]-1);
}
void Divide(int l,int r,int L,int R)
{
if(l>r) return;
if(L==R)
{
for(int i=l;i<=r;i++)
if(!yuu[i].v)
ans[yuu[i].x]=L;
return;
}
int Mid=L+R>>1;
int lp=0,rp=0,cnt=0;
for(int i=l;i<=r;i++)
{
if(yuu[i].v)
{
if(abs(yuu[i].x)>Mid)
{
yuur[++rp]=yuu[i];
if(yuu[i].x>0) modi(yuu[i].u,yuu[i].v,yuu[i].lca,1),++cnt;
else modi(yuu[i].u,yuu[i].v,yuu[i].lca,-1),--cnt;
}
else yuul[++lp]=yuu[i];
}
else
{
int ct=qry(yuu[i].u);
if(ct==cnt) yuul[++lp]=yuu[i];
else yuur[++rp]=yuu[i];
}
}
for(int i=l;i<=r;i++)
if(yuu[i].v&&abs(yuu[i].x)>Mid)
modi(yuu[i].u,yuu[i].v,yuu[i].lca,yuu[i].x>0?-1:1);
for(int i=1;i<=lp;i++) yuu[i+l-1]=yuul[i];
for(int i=1;i<=rp;i++) yuu[i+l+lp-1]=yuur[i];
Divide(l,l+lp-1,L,Mid),Divide(l+lp,r,Mid+1,R);
}
int main()
{
read(n),read(m);
for(int u,v,i=1;i<n;i++) read(u),read(v),add(u,v),add(v,u);
dfs(1);
for(int typ,t,i=1;i<=m;i++)
{
read(typ);
if(typ==0) read(yuu[i].u),read(yuu[i].v),read(yuu[i].x),yuu[i].lca=LCA(yuu[i].u,yuu[i].v);
else if(typ==1) read(t),yuu[i]=yuu[t],yuu[i].x=-yuu[i].x;
else read(yuu[i].u),yuu[i].x=++q;
}
Divide(1,m,0,(int)(1e9));
for(int i=1;i<=q;i++) printf("%d\n",ans[i]?ans[i]:-1);
return 0;
}

2019.3.9

「HNOI2016」网络 解题报告的更多相关文章

  1. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  2. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  3. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

  4. 「SDOI2014」Lis 解题报告

    「SDOI2014」Lis 题目描述 给定序列 \(A\),序列中的每一项 \(A_i\) 有删除代价 \(B_i\) 和附加属性 \(C_i\). 请删除若干项,使得 \(A\) 的最长上升子序列长 ...

  5. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  6. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

  7. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  8. 「SCOI2016」妖怪 解题报告

    「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...

  9. 「SCOI2016」美味 解题报告

    「SCOI2016」美味 状态极差无比,一个锤子题目而已 考虑每次对\(b\)和\(d\)求\(c=d \ xor \ (a+b)\)的最大值,因为异或每一位是独立的,所以我们可以尝试按位贪心. 如果 ...

随机推荐

  1. linux之常见错误

    在日常开发中,尤其是在Linux中进行操作的时候,经常会碰到各种各样的错误.记录一下,熟能生巧,慢慢参透linux的奥秘 1) 在安装ssl证书的时候,发生certbot命令无法使用的情况 解决方案: ...

  2. 使用ThreadLocal管理Mybatis中SqlSession对象

    转自http://blog.csdn.net/qq_29227939/article/details/52029065 public class MybatisUtil { private stati ...

  3. IdentityServer4【Topic】之授权类型

    Grant Types 授权类型 授权类型指出了一个客户端如何与IdentityServer进行交互.OpenID Conect和OAuth2.0定义了如下的授权类型: Implicit Author ...

  4. spring核心思想:IOC(控制反转)和DI(依赖注入)

    Spring有三大核心思想,分别是控制反转(IOC,Inversion Of Controller),依赖注入(DI,Dependency Injection)和面向切面编程(AOP,Aspect O ...

  5. Oracle可视化工具PL/SQL Developer的安装与配置

    安装程序: 安装目录不能有中文和空格,否则无法进行远程连接. 推荐使用 D:\PLSQLDeveloper 为安装目录 破解PLSQLDeveloper 使用工具 PLSQL Developer10. ...

  6. 重构客户注册-基于ActiveMQ实现短信验证码生产者

    重构目标:将bos_fore项目中的CustomerAction作为短信消息生产者,将消息发给ActiveMQ,创建一个单独的SMS项目,作为短信息的消费者,从ActiveMQ获取短信消息,调用第三方 ...

  7. 缓存session,cookie,sessionStorage,localStorage的区别

    https://www.cnblogs.com/cencenyue/p/7604651.html(copy) 浅谈session,cookie,sessionStorage,localStorage的 ...

  8. idea 方便的设置代码段

    使用快捷键(ctrl+alt+s)找到:从idea的菜单File->Settings->Editor->Live Templates 先添加Template Group,然后添加Li ...

  9. 重写TreeView模板来实现数据分层展示(一)

    总想花些时间来好好总结一下TreeView这个WPF控件,今天来通过下面的这几个例子来好好总结一下这个控件,首先来看看一个常规的带虚线的TreeView控件吧,在介绍具体如何完成之前首先来看看最终实现 ...

  10. 利用H5 FormData 实现表单中多图上传(可带其他如String类型数据)

    本篇的具体思路来源于右侧网址:http://blog.csdn.net/qq_19551571/article/details/49977983 本篇代码有所修改,请具体区分. 本篇使用的是 form ...