【HNOI2016】最小公倍数
【HNOI2016】最小公倍数



容易想到先将所有边按\(a\)排序,然后处理\(b\)。(然后我就不会了
我们按\(a\)的权值分块,处理\(a\)权值位于第\(k\)个块的询问的时候,我们先将询问按\(B\)排序,然后将\([1,k-1]\)块中所有\(b_i\leq B\)的边加入并查集中。然后在第\(k\)个块中还有一些边没有加入,我们就暴力加,然后再暴力回退就好了。
分块真是灵活啊!
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 100005
#define M 100005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m,q;
struct edge {
int x,y,a,b;
bool operator <(const edge &e) const {return a<e.a;}
}e[M];
vector<edge>pre;
int d[M];
int bel[M];
const int blk=350;
bool cmp(const edge &A,const edge &B) {return A.b<B.b;}
bool ans[N];
struct query {
int x,y,a,b;
int id;
query() {x=y=a=b=id=0;}
query(int X,int Y,int A,int B,int ID) {x=X,y=Y,a=A,b=B,id=ID;}
bool operator <(const query &a)const {return b<a.b;}
};
vector<query>Q[blk];
int f[N],mxa[N],mxb[N];
int dep[N];
int Getf(int v) {
while(f[v]!=v) v=f[v];
return v;
return v==f[v]?v:f[v]=Getf(f[v]);
}
int lst[N];
void Init() {
for(int i=1;i<=n;i++) {
f[i]=i;
dep[i]=0;
mxa[i]=mxb[i]=0;
}
}
struct ope {
int v,a,b,d;
ope() {v=a=b=d=0;}
ope(int V,int A,int B,int D) {v=V,a=A,b=B,d=D;}
};
vector<ope>ret;
void Get_back() {
while(ret.size()) {
int v=ret.back().v,a=ret.back().a,b=ret.back().b,d=ret.back().d;
f[v]=v,mxa[v]=a,mxb[v]=b;
dep[v]=d;
ret.pop_back();
}
}
void Merge(int x,int y,int a,int b,int flag) {
x=Getf(x),y=Getf(y);
if(flag) {
ret.push_back(ope(x,mxa[x],mxb[x],dep[x]));
ret.push_back(ope(y,mxa[y],mxb[y],dep[y]));
}
if(x==y) {
mxa[x]=max(mxa[x],a);
mxb[x]=max(mxb[x],b);
return ;
}
if(dep[x]>dep[y]) swap(x,y);
f[x]=y;
if(dep[x]==dep[y]) dep[y]++;
mxa[y]=max(mxa[y],max(mxa[x],a));
mxb[y]=max(mxb[y],max(mxb[x],b));
}
bool pd(int x,int y,int a,int b) {
if(Getf(x)!=Getf(y)) return 0;
x=Getf(x);
return mxa[x]>=lst[a]&&mxb[x]==b;
}
void work(int k) {
Init();
sort(Q[k].begin(),Q[k].end());
sort(pre.begin(),pre.end(),cmp);
int tag=0;
int lx=(k-1)*blk+1,rx=min(m,k*blk);
for(int i=0;i<Q[k].size();i++) {
int a=Q[k][i].a,b=Q[k][i].b;
while(tag<pre.size()&&pre[tag].b<=b) {
Merge(pre[tag].x,pre[tag].y,pre[tag].a,pre[tag].b,0);
tag++;
}
for(int j=lx;j<=a;j++) {
if(e[j].b<=Q[k][i].b) Merge(e[j].x,e[j].y,e[j].a,e[j].b,1);
}
ans[Q[k][i].id]=pd(Q[k][i].x,Q[k][i].y,a,b);
Get_back();
}
for(int i=lx;i<=rx;i++) pre.push_back(e[i]);
}
int main() {
n=Get(),m=Get();
for(int i=1;i<=m;i++) {
e[i].x=Get(),e[i].y=Get(),e[i].a=Get(),e[i].b=Get();
}
sort(e+1,e+1+m);
for(int i=1;i<=m;i++) d[i]=e[i].a;
for(int i=1;i<=m;i++) e[i].a=i;
for(int i=1;i<=m;i++) bel[i]=(i-1)/blk+1;
lst[1]=1;
for(int i=2;i<=m;i++)
if(d[i]==d[i-1]) lst[i]=lst[i-1];
else lst[i]=i;
q=Get();
int x,y,a,b;
for(int i=1;i<=q;i++) {
x=Get(),y=Get(),a=Get(),b=Get();
int p=upper_bound(d+1,d+1+m,a)-d-1;
if(p&&d[p]==a) Q[bel[p]].push_back(query(x,y,p,b,i));
}
for(int i=1;i<=bel[m];i++) work(i);
for(int i=1;i<=q;i++)
(ans[i])?cout<<"Yes\n":cout<<"No\n";
return 0;
}
【HNOI2016】最小公倍数的更多相关文章
- BZOJ 4537: [Hnoi2016]最小公倍数 [偏序关系 分块]
4537: [Hnoi2016]最小公倍数 题意:一张边权无向图,多组询问u和v之间有没有一条a最大为a',b最大为b'的路径(不一定是简单路径) 首先想到暴力做法,题目要求就是判断u和v连通,并查集 ...
- 【LG3247】[HNOI2016]最小公倍数
[LG3247][HNOI2016]最小公倍数 题面 洛谷 题解 50pts 因为拼凑起来的部分分比较多,所以就放一起了. 以下设询问的\(a,b\)为\(A,B\), 复杂度\(O(nm)\)的:将 ...
- [BZOJ4537][HNOI2016]最小公倍数(分块+并查集)
4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1687 Solved: 607[Submit][Stat ...
- [BZOJ4537][Hnoi2016]最小公倍数 奇怪的分块+可撤销并查集
4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1474 Solved: 521[Submit][Stat ...
- 【BZOJ4537】[Hnoi2016]最小公倍数 分块
[BZOJ4537][Hnoi2016]最小公倍数 Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在 ...
- 4537: [Hnoi2016]最小公倍数
Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...
- bzoj 4537 HNOI2016 最小公倍数
Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,-,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...
- [HNOI2016]最小公倍数
题目描述 给定一张N个顶点M条边的无向图(顶点编号为1,2,...,n),每条边上带有权值.所有权值都可以分解成2a∗3b2^a*3^b2a∗3b 的形式. 现在有q个询问,每次询问给定四个参数u.v ...
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- [HNOI2016]最小公倍数 (可回退并查集,回滚莫队)
题面 题目链接 题目描述 给定一张 N N N 个顶点 M M M 条边的无向图(顶点编号为 1 , 2 , - , n 1,2,\ldots,n 1,2,-,n),每条边上带有权值.所有权值都可以分 ...
随机推荐
- 【Java每日一题】20170301
20170228问题解析请点击今日问题下方的“[Java每日一题]20170301”查看(问题解析在公众号首发,公众号ID:weknow619) package Mar2017; public cla ...
- LINUX sed grep awk之间比较整理
正则表达式基础 在最简单的情况下,一个正则表达式看上去就是一个普通的查找串.例如,正则表达式"testing"中没有包含任何元字符,,它可以匹配"testing" ...
- Java中单例实现
1:.经典懒汉: 代码如下: package org.pine.test; public class Person { private String name; private int age; pu ...
- Go开发之路 -- 时间和日期类型
time包 time.Time类型, 用来表示时间 获取当前时间, now := time.Now() time.Duration() 用来表示纳秒 时间类型的格式化 now := time.Now( ...
- 安装docker17.06.0版本报错和解决方法
本人在自己电脑的虚拟机里安装docker ce 17.06.0版本的时候报如下错误: [root@manager2 yum.repos.d]# yum install docker-ce-17.06. ...
- iOS------教你如何APP怎么加急审核
苹果的加急审核如何使用呢? 在iTunesconnect页面,点击右上角的“?”图标,在弹出菜单中选择“联系我们”, 联系我们 然后在Contact Us页面,选择“App Review” —> ...
- Android 设计模式对比
引言: Android框架的发展的过程就是一个不断化繁为简的过程,大家都在研究如何正确方便高效的规范代码.当然这条路也永远不会停止,就像新的芽儿,随着时间的流逝,每天都在长出新的枝叶,每天都在成长.对 ...
- Java面试题总结(不定期更新)
1.HashMap和Hashtable的区别? HashMap:key.value都可以为空,线程不安全.初始容量16,扩容方式每次为2倍 Hashtable:不支持null key 和null va ...
- 章节七、6-Map集合的区别
一.通过entrySet取出Map中的元素 package ZangJie7; import java.util.HashMap; import java.util.Map; public class ...
- (其他)sublime text3的emmt插件的简便用法