在讲解windows的众多操作之前,需要讲解一个概念:

源源不断的数据流是无法进行统计工作的,因为数据流没有边界,就无法统计到底有多少数据经过了这个流。也无法统计数据流中的最大值,最小值,平均值,累加值等信息。

如果在数据流上,截取固定大小的一部分,这部分是可以进行统计的。 截取方式主要有两种,

关于window的理论+实践

tumbling-time-window (无重叠数据)

1.红绿灯路口会有汽车通过,一共会有多少汽车通过,无法计算。因为车流源源不断,计算没有边界。

2.统计每15秒钟通过红路灯的汽车数量,第一个15秒为2辆,第二个15秒为3辆,第三个15秒为1辆。。。

1.发送命令
nc -lk 9999 2.发送内容
9,3
9,2
9,7
4,9
2,6
1,5
2,3
5,7
5,4

代码:

object Window {
def main(args: Array[String]): Unit = {
//TODO time-window
//1.创建运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment //2.定义数据流来源
val text = env.socketTextStream("localhost", 9999) //3.转换数据格式,text->CarWc
case class CarWc(sensorId: Int, carCnt: Int)
val ds1: DataStream[CarWc] = text.map {
line => {
val tokens = line.split(",")
CarWc(tokens(0).trim.toInt, tokens(1).trim.toInt)
}
} //4.执行统计操作,每个sensorId一个tumbling窗口,窗口的大小为5秒
//也就是说,每5秒钟统计一次,在这过去的5秒钟内,各个路口通过红绿灯汽车的数量。
val ds2: DataStream[CarWc] = ds1
.keyBy("sensorId")
.timeWindow(Time.seconds(5))
.sum("carCnt") //5.显示统计结果
ds2.print() //6.触发流计算
env.execute(this.getClass.getName) }
}

sliding-time-window (有重叠数据)

//TODO 2.tumbling-time-window(有重叠)
//1.创建运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment //2.定义数据流来源
val text = env.socketTextStream("localhost", 9999) //3.转换数据格式,text->CarWc
case class CarWc(sensorId: Int, carCnt: Int)
val ds1: DataStream[CarWc] = text.map {
line => {
val tokens = line.split(",")
CarWc(tokens(0).trim.toInt, tokens(1).trim.toInt)
}
}
//4.执行统计操作,每个sensorId一个sliding窗口,窗口时间10秒,滑动时间5秒
//也就是说,每5秒钟统计一次,在这过去的10秒钟内,各个路口通过红绿灯汽车的数量。
val ds2: DataStream[CarWc] = ds1
.keyBy("sensorId")
.timeWindow(Time.seconds(10), Time.seconds(5))
.sum("carCnt") //5.显示统计结果
ds2.print() //6.触发流计算
env.execute(this.getClass.getName)

tumbling-count-window (无重叠数据)

按照个数进行统计,比如:

每个路口分别统计,收到关于它的5条消息时统计在最近5条消息中,各自路口通过的汽车数量

1.发送命令
nc -lk 9999
2.发送内容
9,3
9,2
9,7
4,9
2,6
1,5
2,3
5,7
5,4
//TODO tumbling-count-window (无重叠数据)
//1.创建运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment //2.定义数据流来源
val text = env.socketTextStream("localhost", 9999) //3.转换数据格式,text->CarWc
case class CarWc(sensorId: Int, carCnt: Int)
val ds1: DataStream[CarWc] = text.map {
(f) => {
val tokens = f.split(",")
CarWc(tokens(0).trim.toInt, tokens(1).trim.toInt)
}
}
//4.执行统计操作,每个sensorId一个tumbling窗口,窗口的大小为5
//按照key进行收集,对应的key出现的次数达到5次作为一个结果
val ds2: DataStream[CarWc] = ds1
.keyBy("sensorId")
.countWindow(5)
.sum("carCnt") //5.显示统计结果
ds2.print() //6.触发流计算
env.execute(this.getClass.getName)

sliding-count-window (有重叠数据)

同样也是窗口长度和滑动窗口的操作:窗口长度是5,滑动长度是3

//TODO sliding-count-window(有重叠)
//1.创建运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment //2.定义数据流来源
val text = env.socketTextStream("localhost", 9999) //3.转换数据格式,text->CarWc
case class CarWc(sensorId: Int, carCnt: Int)
val ds1: DataStream[CarWc] = text.map {
(f) => {
val tokens = f.split(",")
CarWc(tokens(0).trim.toInt, tokens(1).trim.toInt)
}
}
//4.执行统计操作,每个sensorId一个sliding窗口,窗口大小3条数据,窗口滑动为3条数据
//也就是说,每个路口分别统计,收到关于它的3条消息时统计在最近5条消息中,各自路口通过的汽车数量
val ds2: DataStream[CarWc] = ds1
.keyBy("sensorId")
.countWindow(5, 3)
.sum("carCnt") //5.显示统计结果
ds2.print() //6.触发流计算
env.execute(this.getClass.getName)

window总结

1.flink支持两种划分窗口的方式(time和count)

如果根据时间划分窗口,那么它就是一个time-window

如果根据数据划分窗口,那么它就是一个count-window

2.flink支持窗口的两个重要属性(size和interval)

如果size=interval,那么就会形成tumbling-window(无重叠数据)

如果size>interval,那么就会形成sliding-window(有重叠数据)

如果size<interval,那么这种窗口将会丢失数据。比如每5秒钟,统计过去3秒的通过路口汽车的数据,将会漏掉2秒钟的数据。

3.通过组合可以得出四种基本窗口

time-tumbling-window 无重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5))

time-sliding-window 有重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5), Time.seconds(3))

count-tumbling-window无重叠数据的数量窗口,设置方式举例:countWindow(5)

count-sliding-window 有重叠数据的数量窗口,设置方式举例:countWindow(5,3)

Flink的Windows的更多相关文章

  1. 大数据:Windows下配置flink的Stream

    对于开发人员来说,最希望的是需要在windows中进行测试,然后把调试好的程序放在集群中运行.下面写一个Socket,上面是监控本地的一个运行端口,来实时的提取数据.获取视频中文档资料及完整视频的伙伴 ...

  2. Flink快速入门

    文章目录 1 安装:下载并启动 1.1 下载 1.2 启动一个local模式的Flink集群 2 运行例子 3 集群模式安装 4 Flink on YARN 安装:下载并启动 Flink可以在Linu ...

  3. 从flink-example分析flink组件(1)WordCount batch实战及源码分析

    上一章<windows下flink示例程序的执行> 简单介绍了一下flink在windows下如何通过flink-webui运行已经打包完成的示例程序(jar),那么我们为什么要使用fli ...

  4. flink入门实战总结

    随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便 ...

  5. Flink快速入门--安装与示例运行

    flink是一款开源的大数据流式处理框架,他可以同时批处理和流处理,具有容错性.高吞吐.低延迟等优势,本文简述flink在windows和linux中安装步骤,和示例程序的运行. 首先要想运行Flin ...

  6. Flink入门宝典(详细截图版)

    本文基于java构建Flink1.9版本入门程序,需要Maven 3.0.4 和 Java 8 以上版本.需要安装Netcat进行简单调试. 这里简述安装过程,并使用IDEA进行开发一个简单流处理程序 ...

  7. Flink入门(三)——环境与部署

    flink是一款开源的大数据流式处理框架,他可以同时批处理和流处理,具有容错性.高吞吐.低延迟等优势,本文简述flink在windows和linux中安装步骤,和示例程序的运行,包括本地调试环境,集群 ...

  8. Flink SQL结合Kafka、Elasticsearch、Kibana实时分析电商用户行为

    body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...

  9. Extending the Yahoo! Streaming Benchmark

    could accomplish with Flink back at Twitter. I had an application in mind that I knew I could make m ...

随机推荐

  1. [转]ASCII码表及扩展ASCII码表,方便查阅

    ASCII码表可以看成由三部分组成: 第一部分:由00H到1FH共32个,一般用来通讯或作为控制之用.有些可以显示在屏幕上,有些则不能显示,但能看到其效果(如换行.退格).如下表: 第二部分:是由20 ...

  2. response.setContentType()的String参数及对应类型

    response.addHeader("Content-Disposition", "attachment;filename="+ filename); res ...

  3. scrapy 在迭代爬取时被拒 offsite 增加dont_filter=True

  4. PHP中使用Redis长连接笔记

    pconnect函数声明 其中time_out表示客户端闲置多少秒后,就断开连接.函数连接成功返回true,失败返回false: pconnect(host, port, time_out, pers ...

  5. Codeforces 1093E Intersection of Permutations [CDQ分治]

    洛谷 Codeforces 思路 一开始想到莫队+bitset,发现要T. 再想到分块+bitset,脑子一抽竟然直接开始写了,当然也T了. 最后发现这就是个裸的CDQ分治-- 发现\(a\)不变,可 ...

  6. STM32L476应用开发之六:电池SOC检测

    便携式设备由于使用需求而配备了锂电池,但使用过程中需要掌握电源的状态才能保证设备正常运行.而且在电池充放电的过程中,监控电池的充放电状态也是保证设备安全的需要. 1.硬件设计 电池SOC检测是一个难题 ...

  7. 处理数据库 Ora-00845: memory_traget not supported on this system 的错误

    问题出现情况:在数据库启动的时候:如果出现如下图的错误: 查看官方文档: 处理操作步骤: [oracle@localhost orcl]$ su - root Password: [root@loca ...

  8. easyui datagrid 隔行变色

    easyui datagrid  隔行变色 一:实现样图 二:实现代码 $('#dataGrid').datagrid({ rowStyler:function(index,row){ if (row ...

  9. oracle数据库内存调整之增加内存

    注:本文来源:小颜Kevin   <oracle数据库内存调整之增加内存> 模拟操作系统内存从2G增加为8G后,调整数据库内存参数,示例中参数不作为实际生产环境参考,因为因需所取,调整参数 ...

  10. Confluence 6 目录中的数据库

    所有的其他数据库,包括有页面,内容都存储在数据库中.如果你安装的 Confluence 是用于评估或者你选择使用的是 Embedded H2 Database 数据库.数据库有关的文件将会存储在 da ...