题目描述

  给你一个长度为\(n\)的排列\(a\),每次要选择两个数,交换这两个数(这两个数可以相同)。总共要交换\(k\)次。

  最后要统计数列中有多少位置\(i\)满足\(\max_{j\leq i}a_i=a_i\)。求前面这个东西的期望。

  \(n\leq 100,k\leq 80\)

题解

  我们枚举每个数\(y\)每在个位置\(x\)的贡献。把其他数中大于\(y\)的看成\(1\),把其他数中小于\(y\)的看成\(0\),然后DP。

  设\(f_{i,j,k}\)为交换了\(i\)次,\(1\)~\(x-1\)有\(j\)个\(1\),(\(k\)在下面解释)的方案数

  两条竖线中间是位置\(x\)

  \(k=0\):\(|y|\)

  \(k=1\):\(y|0|\)

  \(k=2\):\(y|1|\)

  \(k=3\):\(|0|y\)

  \(k=4\):\(|1|y\)

  转移很多很繁琐,大家自己去推吧。。。

  时间复杂度:总共有\(O(n^2)\)次DP,每次\(O(nk)\),总的时间复杂度是\(O(n^3k)\)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<ctime>
#include<cstdlib>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const ll p=1000000007;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int x,y,i,j,k;
int n,m;
int a[100010];
ll f[90][110][5];
void add(ll &a,ll b)
{
a=(a+b)%p;
}
ll qian0(){return (k==1||k==2)?x-2-j:x-1-j;}
ll qian1(){return j;}
ll hou0(){return (k==2?y+j-x+1:(k==3?y+j-x-1:y+j-x));}
ll hou1(){return (k==2||k==4)?n-y-j-1:n-y-j;}
ll qian0(int k){return (k==1||k==2)?x-2-j:x-1-j;}
ll qian1(int k){return j;}
ll hou0(int k){return (k==2?y+j-x+1:(k==3?y+j-x-1:y+j-x));}
ll hou1(int k){return (k==2||k==4)?n-y-j-1:n-y-j;}
int now(){return (k==1||k==3)?0:((k==2||k==4)?1:-1);}
int where(){return (k==1||k==2)?0:1;}
ll sqr(ll x){return x*x%p;}
ll gao()
{
memset(f,0,sizeof f);
int h=0,hh;
for(i=1;i<x;i++)
if(a[i]>y)
h++;
for(i=1;i<=n;i++)
if(a[i]==y)
{
hh=i;
break;
}
if(hh==x)
f[0][h][0]=1;
else if(hh<x)
if(a[x]<y)
f[0][h][1]=1;
else
f[0][h][2]=1;
else
if(a[x]<y)
f[0][h][3]=1;
else
f[0][h][4]=1;
for(i=0;i<m;i++)
for(j=0;j<y;j++)
{
for(k=0;k<=4;k++)
if(f[i][j][k])
{
add(f[i+1][j][k],f[i][j][k]*sqr(qian0()+qian1()));
add(f[i+1][j][k],f[i][j][k]*sqr(hou0()+hou1()));
add(f[i+1][j][k],f[i][j][k]*2*qian0()%p*hou0());
add(f[i+1][j][k],f[i][j][k]*2*qian1()%p*hou1());
add(f[i+1][j][k],f[i][j][k]);
if(j)
add(f[i+1][j-1][k],f[i][j][k]*2*qian1()%p*hou0());
if(j<y-1)
add(f[i+1][j+1][k],f[i][j][k]*2*qian0()%p*hou1());
if(k)
add(f[i+1][j][k],f[i][j][k]);
}
if(f[i][j][0])
{
add(f[i+1][j][1],f[i][j][0]*2*qian0(0));
if(j)
add(f[i+1][j-1][2],f[i][j][0]*2%p*qian1(0));
add(f[i+1][j][3],f[i][j][0]*2*hou0(0));
add(f[i+1][j][4],f[i][j][0]*2*hou1(0));
}
if(f[i][j][1])
{
add(f[i+1][j][0],f[i][j][1]*2);
add(f[i+1][j][1],f[i][j][1]*2*(qian0(1)+qian1(1)));
add(f[i+1][j][3],f[i][j][1]*2*hou0(1));
if(j<y-1)
add(f[i+1][j+1][3],f[i][j][1]*2%p*hou1(1));
add(f[i+1][j][1],f[i][j][1]*2*(qian0(1)+hou0(1)));
add(f[i+1][j][2],f[i][j][1]*2*hou1(1));
if(j)
add(f[i+1][j-1][2],f[i][j][1]*2%p*qian1(1));
} if(f[i][j][2])
{
if(j<y-1)
add(f[i+1][j+1][0],f[i][j][2]*2);
add(f[i+1][j][2],f[i][j][2]*2*(qian0(2)+qian1(2)));
add(f[i+1][j][4],f[i][j][2]*2*hou0(2));
if(j<y-1)
add(f[i+1][j+1][4],f[i][j][2]*2%p*hou1(2));
add(f[i+1][j][1],f[i][j][2]*2*hou0(2));
if(j<y-1)
add(f[i+1][j+1][1],f[i][j][2]*2%p*qian0(2));
add(f[i+1][j][2],f[i][j][2]*2*(qian1(2)+hou1(2)));
} if(f[i][j][3])
{
add(f[i+1][j][0],f[i][j][3]*2);
add(f[i+1][j][3],f[i][j][3]*2*(hou0(3)+hou1(3)));
add(f[i+1][j][1],f[i][j][3]*2*qian0(3));
if(j)
add(f[i+1][j-1][1],f[i][j][3]*2*qian1(3));
add(f[i+1][j][3],f[i][j][3]*2*(qian0(3)+hou0(3)));
add(f[i+1][j][4],f[i][j][3]*2*hou1(3));
if(j)
add(f[i+1][j-1][4],f[i][j][3]*2*qian1(3));
} if(f[i][j][4])
{
add(f[i+1][j][0],f[i][j][4]*2);
add(f[i+1][j][4],f[i][j][4]*2*(hou0(4)+hou1(4)));
add(f[i+1][j][2],f[i][j][4]*2*qian0(4));
if(j)
add(f[i+1][j-1][2],f[i][j][4]*2*qian1(4));
add(f[i+1][j][3],f[i][j][4]*2*hou0(4));
if(j<y-1)
add(f[i+1][j+1][3],f[i][j][4]*2*qian0(4));
add(f[i+1][j][4],f[i][j][4]*2*(qian1(4)+hou1(4)));
}
}
return f[m][0][0];
}
int main()
{
open("pltj");
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
ll ans=0;
for(x=1;x<=n;x++)
for(y=1;y<=n;y++)
if(y>=x)
ans=(ans+gao())%p;
ans=ans*fp(fp(n,2*m),p-2)%p;
printf("%lld\n",ans);
return 0;
}

【XSY2668】排列统计 DP的更多相关文章

  1. 动态规划——区间DP,计数类DP,数位统计DP

    本博客部分内容参考:<算法竞赛进阶指南> 一.区间DP 划重点: 以前所学过的线性DP一般从初始状态开始,沿着阶段的扩张向某个方向递推,直至计算出目标状态. 区间DP也属于线性DP的一种, ...

  2. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

  3. LA 3641 Leonardo的笔记本 & UVA 11077 排列统计

    LA 3641 Leonardo的笔记本 题目 给出26个大写字母的置换B,问是否存在要给置换A,使得 \(A^2 = B\) 分析 将A分解为几个循环,可以观察经过乘积运算得到\(A^2\)后,循环 ...

  4. BZOJ 1072: [SCOI2007]排列perm [DP 状压 排列组合]

    题意:给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0) 100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15 看到整 ...

  5. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  6. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

  7. [Bzoj3193][JLOI2013]地形生成 (排列组合 + DP)

    3193: [JLOI2013]地形生成 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 459  Solved: 223[Submit][Status ...

  8. P7444-「EZEC-7」猜排列【dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P7444 题目大意 一个长度为\(n\)的排列,已知每个\(c_i\)表示那个排列中\(mex\)为\(i\)的区间 ...

  9. 【XSY2666】排列问题 DP 容斥原理 分治FFT

    题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...

随机推荐

  1. python第三章:循环语句--小白博客

    Python条件语句 Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块. 可以通过下图来简单了解条件语句的执行过程: Python程序语言指定任何非0和非 ...

  2. GitHub上README.md编写教程(基本语法)

    一.标题写法: 第一种方法: 1.在文本下面加上 等于号 = ,那么上方的文本就变成了大标题.等于号的个数无限制,但一定要大于0个哦.. 2.在文本下面加上 下划线 - ,那么上方的文本就变成了中标题 ...

  3. 十三、MUI的日期起始和结束日期设置

    MUI的日期选择器的使用 // 日期选择器 //生日选择器(不会超过今年) function fdPicker1(id) { var year=new Date().getFullYear(); va ...

  4. Tarjan算法(缩点)

    因为最近在学2sat,需要学习前置技能—Tarjan算法,所以花了一天的时间学习这个算法 算法步骤: 1.从一个点开始dfs,并加入栈 2.如果下一个点没有到过,跳到第一步 3.如果下一个点到过,并且 ...

  5. js tool 方法之删除数组指定项

    最近又开始写博文了,还是在自己的本地项目上做一些小的方法案例. 之前撸代码的时候总是遇到删除数组里某个元素的问题,JS没提供便捷的方法,只能自己写个循环处理,所幸自己写个方法,以后博客项目里要用到就不 ...

  6. RabbitMQ 安装与使用

    RabbitMQ 安装与使用   前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异 ...

  7. Elasticsearch 5.0Head插件

    Elasticsearch 5.0 —— Head插件部署指南   使用ES的基本都会使用过head,但是版本升级到5.0后,head插件就不好使了.下面就看看如何在5.0中启动Head插件吧! 官方 ...

  8. Hibernate two table same id

    Hibernate更新数据(不用update也可以) - 森林木马 - 博客园 https://www.cnblogs.com/owenma/p/3481497.html hibernate级联更新会 ...

  9. Git - 常见错误与解决方案

    1.windows使用git时出现:warning: LF will be replaced by CRLF 分析: windows中的换行符为 CRLF, 而在linux下的换行符为LF,所以在执行 ...

  10. Hbase数据结构模型