题目链接:[IOI2008]Island

题目大意:求基环树直径(由于题目的意思其实是类似于每个点只有一个出度,所以在每个联通块中点数和边数应该是相同的,这就是一棵基环树,所以题目给出的图就是一个基环树森林,又由于乘船的操作,可以知道答案就是将所有的直径相加起来的和)

分析:类似于树的直径,我们可以类推出基环树的直径也是有以下两种情况

​ 1、是某个外向树的直径

​ 2、两个点处于两课不同的外向树中(中间横跨了一段环上的边)

​ 我们首先要把环找到

​ 对于1的处理,我们可以对环上的点及其外向树直接进行dfs求解

​ 对于2,我们会稍微复杂一点,首先可以明确的是,这两个点肯定是道他们对应的根节点距离最大的点,我们记以\(u\)为根节点的树中的最大距离是\(dis_u\),再在环上任选一个点,环上到这个点的距离为\(sum_i\)(所有的距离应是同向的),环上的每一条边的距离和为\(sum_{cnt}\),那么答案就应该是这样的

\[ans=max(ans,max(dis_i+dis_j+(sum_i-sum_j),dis_i+dis_j+sum_{cnt}-(sum_i-sum_j)))
\]

将其变形可以得到

\[ans=max(ans,max((sum_i+dis[i])-(sum_j-dis[j]),sum_{cnt}-(sum_i-dis[i])+(sum_j+dis[j])))
\]

注意到所有的\(dis\)和\(sum\)均已知,且我们保证在处理节点\(i\)之前已经处理了点\(j\),并且通过我们的整理,上面的式子其实只剩下了两种形式:\(sum_i+dis[i]\)和\(sum_i-dis[i]\)

那么为了保证这个最大值,我们可以记录\(mind=min(sum_i-dis[i])\)和\(maxd=max(sum_i+dis[i])\),每次寻找\(ans\)时直接使用这两个值更新答案可以保证最优,同时沿途更新这两个值

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
using namespace std;
struct node{
int to,nxt,cost;
}sq[2000100];
int n,head[1000100],cp[1001000],fa[1001000],
sq1[1001000][3],all=0,cnt=0;
bool vis[1001000],cir[1001000];
long long dis[1001000],sum[1001000],ans; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} void add(int u,int v,int w)
{
all++;sq[all].to=v;sq[all].nxt=head[u];sq[all].cost=w;head[u]=all;
} void init()
{
n=read();
int i;
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(cir,0,sizeof(cir));
memset(dis,0,sizeof(dis));
for (i=1;i<=n;i++)
{
int v=read(),w=read();
add(i,v,w);add(v,i,w);
sq1[i][0]=i;sq1[i][1]=v;sq1[i][2]=w;
}
} void findcircle(int u)
{
vis[u]=1;cnt=0;
while (1)
{
int v=sq1[u][1];
if (vis[v])
{
cp[++cnt]=v;cir[v]=1;int i;sum[cnt]=sq1[v][2];
for (i=u;i!=v;i=fa[i])
{
cir[i]=1;cp[++cnt]=i;sum[cnt]=sq1[i][2];
}
for (i=1;i<=cnt;i++) sum[i]+=sum[i-1];
break;
}
else {vis[v]=1;fa[v]=u;}
u=v;
}
} void find_d(int u)
{
cir[u]=1;
int i;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to,w=sq[i].cost;
if (cir[v]) continue;
find_d(v);
ans=max(ans,dis[u]+dis[v]+w);
dis[u]=max(dis[u],dis[v]+w);
}
} long long findans(int u)
{
sum[0]=0;
findcircle(u);
int i;
ans=0;long long mind=1e18+7,maxd=-mind;
for (i=1;i<=cnt;i++) find_d(cp[i]);
for (i=1;i<=cnt;i++)
{
int v=cp[i];
ans=max(ans,max(sum[i]+dis[v]-mind,sum[cnt]-(sum[i]-dis[v])+maxd));
mind=min(mind,sum[i]-dis[v]);
maxd=max(maxd,sum[i]+dis[v]);
}
//cout << 1;
//for (i=1;i<=n;i++) cout << vis[i] << " ";cout << endl;
return ans;
} void work()
{
long long sumans=0;
int i;
for (i=1;i<=n;i++) if (!cir[i]) sumans+=findans(i);
printf("%lld",sumans);
} int main()
{
init();
work();
return 0;
}
/*
7
3 8
7 2
4 2
1 4
1 9
3 4
2 3
*/

IOI2008 island的更多相关文章

  1. bzoj1791: [Ioi2008]Island 岛屿 单调队列优化dp

    1791: [Ioi2008]Island 岛屿 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1826  Solved: 405[Submit][S ...

  2. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  3. bzoj千题计划114:bzoj1791: [Ioi2008]Island 岛屿

    http://www.lydsy.com/JudgeOnline/problem.php?id=1791 就是求所有基环树的直径之和 加手工栈 #include<cstdio> #incl ...

  4. BZOJ1791: [Ioi2008]Island 岛屿

    BZOJ1791: [Ioi2008]Island 岛屿 Description 你将要游览一个有N个岛屿的公园. 从每一个岛i出发,只建造一座桥. 桥的长度以Li表示. 公园内总共有N座桥. 尽管每 ...

  5. [题解] LuoguP4381 [IOI2008]Island

    LuoguP4381 [IOI2008]Island Description 一句话题意:给一个基环树森林,求每棵基环树的直径长度的和(基环树的直径定义与树类似,即基环树上一条最长的简单路径),节点总 ...

  6. [bzoj1791][ioi2008]Island 岛屿(基环树、树的直径)

    [bzoj1791][ioi2008]Island 岛屿(基环树.树的直径) bzoj luogu 题意可能会很绕 一句话:基环树的直径. 求直径: 对于环上每一个点记录其向它的子树最长路径为$dp_ ...

  7. bzoj 1791: [Ioi2008]Island 岛屿

    #include<iostream> #include<cstdio> #define M 1000009 using namespace std; *M],cnt,n,hea ...

  8. 【BZOJ 1791】 [Ioi2008]Island 岛屿

    Description 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样 ...

  9. 【题解】Luogu P4381 [IOI2008]Island

    原题传送门 题意:求基环树森林的直径(所有基环树直径之和) 首先,我们要对环上所有点的子树求出它们的直径和最大深度.然后,我们只用考虑在环上至少经过一条边的路径.那么,这种路径在环上一定有起始点和终点 ...

随机推荐

  1. 使用Dockerfile来构建镜像

    Dockerfile原理 创建Dockerfile Dockerfile实例 Dockerfile指令 注释 FROM MAINTAINER RUN ADD WORKDIR ENV USER COPY ...

  2. 如何入门vue之二

    学习完指令之后我们需要学习的就是组件. 在学习组件前我们要了解一下 methods 用来处理事件的. computed用来计算属性  他就是类似于data一样只不过是动态的处理数据 里面写的方法当成属 ...

  3. 安装openssl

    此方法安装原因: 由于我用是非企业版 redhat 没有注册  有很多的yum 不能安装  openssl是在其中. 开始安装: 1.虚拟机挂载ios 镜像文件 2.进入终端 cd /media/RH ...

  4. 剑指offer(20)二叉搜索树与双向表

    题目: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 思路一:递归法 1.将左子树构造成双链表,并返回链表头节点. 2.定位至左子 ...

  5. 你不知道的JavaScript——第一章:作用域是什么?

    编译原理 JavaScript事实上是一门编译语言,但与传统的编译语言不同,它不是提前编译的,编译结果也不能在分布式系统中进行移植. 任何JavaScript代码片段在执行前都要进行编译(通常就在执行 ...

  6. python pip安装找不到指定包的时候怎么解决

    在该网址上下载对应版本的包然后安装即可. https://www.lfd.uci.edu/~gohlke/pythonlibs/

  7. WPF通过DynamicResource实现给界面动态更换皮肤

    在我们的程序中有时候需要去实现动态更换皮肤的效果,从而完成一些个性化的设置,那么我们究竟怎样去实现动态换皮肤的效果呢?那么我们经常用到的就是设置不同的Style,并且在主程序的xaml文件中通过Dyn ...

  8. netstat -na 查看有大量TIME_WAIT解决办法(修改内核参数)

    # netstat -an|awk '/tcp/ {print $6}'|sort|uniq -c      16 CLOSING     130 ESTABLISHED     298 FIN_WA ...

  9. QTP 自动化测试桌面程序--笔记(关闭 启动程序脚本) 、安装

    0 安装qtp .exe 文件 安装 插件文件(如delph) 1 关闭 启动程序: 将要操作的程序-存入localdatatable中 设置 迭代一次 rem SystemUtil.ClosePro ...

  10. Delphi 工具条按钮上的下拉菜单

    制作步骤: 1.添加一个 TImageList: ImageList1, 然后载入些图标; 2.添加两个 TPopupMenu: PopupMenu1.PopupMenu2, 并分别添加些菜单项; 3 ...