题目描述

小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

输入输出格式

输入格式:

第一行两个整数n,m,表示点的个数和边的个数。

接下来m行每行两个数字u,v,表示一条u到v的边。

输出格式:

一行一个数字,表示到公司的最少秒数。

输入输出样例

输入样例#1:

4 4
1 1
1 2
2 3
3 4
输出样例#1:

1

说明

【样例解释】

1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

【数据范围】

50%的数据满足最优解路径长度<=1000;

100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。

题解:

简单而又不失脑洞的题目,因为2^k可以到处乱绕(来回绕圈),所以想象平时倍增时的思路

fa[i][j]=fa[fa[i][j-1]][j-1]

这里也差不多,定义f[i][j][g]表示i到j能否通过2^g跳到,那么f[i][j][g]=(f[i][k][g-1]&f[k][j][g-1])

然后把等于true的f[i][j] 的i和j连一条长为1的边Floyd即可

几个注意的地方:

1.原图为单向边.

2.g最大可为log(maxlongint)....

 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=;
bool f[N][N][];int dis[N][N];
void work()
{
int n,m,x,y;
scanf("%d%d",&n,&m);
memset(dis,/,sizeof(dis));
for(int i=;i<=m;i++){
scanf("%d%d",&x,&y);
f[x][y][]=true;
dis[x][y]=;
}
for(int g=;g<=;g++)
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(f[i][k][g-] && f[k][j][g-])f[i][j][g]=true,dis[i][j]=;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dis[i][k]+dis[k][j]<dis[i][j])dis[i][j]=dis[i][k]+dis[k][j];
printf("%d\n",dis[][n]);
}
int main()
{
work();
return ;
}

Luogu1613 跑路的更多相关文章

  1. Luogu1613 跑路-倍增+Floyd

    Solution 挺有趣的一道题, 仔细想想才想出来 先用$mp[i][j][dis]$ 是否存在一条 $i$ 到 $j$ 的长度为 $2^{dis}$ 的路径. 转移 : ; dis < ba ...

  2. [日常摸鱼]luogu1613跑路

    新年A的第一道题2333 https://www.luogu.org/problemnew/show/P1613 题意:给一张有向图,每条边长为1,每个单位时间只能走$2^k$的长度,$k$可以任意选 ...

  3. 【luogu1613】跑路 - 倍增+Floyd

    题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟 ...

  4. TM4C123G红外触摸屏:开发板好不容易实现了原理,放到专家设计的板子上无法运行,于是专家跑路项目黄了

    使用TI的TM4C123G LaunchPad开发板,USB接口,来对同样的芯片进行烧写. 我们只用烧写那一块功能,不用另外一个芯片的开发功能,需要跳线   源码项目:   从官方网站TM4C123G ...

  5. 估值十亿美元、1.5亿用户,公司CEO却跑路了

    转载这篇文章是觉得配图非常好玩的,文章的真实性有待证明 年收益3600万美元的.曾经拥有高口碑产品的Evernote,却正在把一手好牌打烂,距离IPO越来越远,屡屡被业界唱衰. "独角兽公司 ...

  6. 洛谷P1613 跑路

    P1613 跑路 176通过 539提交 题目提供者该用户不存在 标签倍增动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 这个题的数据.. 题意问题 表意 题目描述 小A的工作不仅繁 ...

  7. 编程从入门到提高,然后放弃再跑路(Java)

    1.Java入门篇 1.1 基础入门和面向对象 1.1.1 编程基础 [01] Java语言的基本认识 [02] 类和对象 [03] 类的结构和创建对象 [04] 包和访问权限修饰符 [05] 利用p ...

  8. 干货,不小心执行了rm -f,除了跑路,如何恢复?

    前言 每当我们在生产环境服务器上执行rm命令时,总是提心吊胆的,因为一不小心执行了误删,然后就要准备跑路了,毕竟人不是机器,更何况机器也有bug,呵呵. 那么如果真的删除了不该删除的文件,比如数据库. ...

  9. 理解Linux文档的默认安全机制、隐藏属性、特殊权限,妈妈在也不用担心你从删库到跑路!!!

    写在前面 前面的章节 详解Linux文档属性.拥有者.群组.权限.差异,介绍了文档的基本权限,包括读写执行(r,w,x),还有文档若干的属性,包括是否为目录(d).文件(-).链接文件(l).拥有者. ...

随机推荐

  1. 201621123068 Week03-面向对象入门

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写出你 ...

  2. 201421123042 《Java程序设计》第13周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 答: 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多个用户 ...

  3. "一不小心就火了"团队采访

    团队采访 一. 采访团队 团队:一不小心就火了 采访形式:线上问答 二.采访内容 你们是怎么合理地具体分配组员里的工作的?有些团队会出现个别组员代码任务很重,个别组员无所事事的情况,你们有什么有效的方 ...

  4. ajax实现无刷新分页效果

    基于jquery.pagination.js实现的无刷新加载分页数据效果. 简介与说明 * 该插件为Ajax分页插件,一次性加载数据,故分页切换时无刷新与延迟.如果数据量较大,加载会比较慢. * 分页 ...

  5. EXT3文件系统误删除导致文件系统中的邮件丢失恢复方法

    一.故障描述 由8块盘组成的RAID5, 上层是EXT3文件系统,由于误删除导致文件系统中的邮件丢失 二.镜像磁盘为防止数据恢复过程中由于误操作对原始磁盘造成二次破坏, 使用winhex软件为每块磁盘 ...

  6. session 与 cookie (一)

    服务器信息临时存储 session篇 web.xml设置 <session-config> <session-timeout></session-timeout> ...

  7. 深度学习之 cnn 进行 CIFAR10 分类

    深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from to ...

  8. Angular 学习笔记 ( CDK - Accessibility )

    @angular/ckd 是 ng 对于 ui 组建的基础架构. 是由 material 团队开发与维护的, 之所以会有 cdk 看样子是因为在开发 material 的时候随便抽象一个层次出来给大家 ...

  9. 1.2WEB API 跨域

    详细请参考http://www.cnblogs.com/landeanfen/p/5177176.html 在项目上面使用Nuget安装 microsoft.aspnet.webapi.cors 在w ...

  10. 多线程编程、java图形用户界面编程、Java I / O系统

    线程概述 进程:是一种 “自包容”的运行程序 线程是进程当中的一个概念,最小处理单位 THread类.Runnable接口.Object类 创建新执行线程有两种方法:1:一种方法是将类声明为Threa ...