bzoj2839: 集合计数 容斥+组合
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 523 Solved: 287
[Submit][Status][Discuss]
Description
一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
Input
一行两个整数N,K
Output
一行为答案。
Sample Input
3 2
Sample Output
6
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
选出k个重合元素的集合的方案数
首先是k个元素的选择C(n,k)
再考虑其他元素不交的方案m
容斥: m=任意选集合的方案数-C(n-k,1)交集至少为1的方案+C(n-k,2)交集至少为2的方案...
ans=C(n,k)*sum(C(n-k,i)*(2^(2^(n-i-k))-1)) 0<=i<=n-k
i=0是任意选的方案数
处理组合数可以用公式
其中涉及逆元,可以用递推求逆元数组
因为mod是一个质数,也可以考虑费马小定理
推荐blog
https://www.cnblogs.com/candy99/p/6613808.html
/*
选出k个重合元素的集合的方案数
首先是k个元素的选择C(n,k)
再考虑其他元素不交的方案m
容斥: m=任意选集合的方案数-C(n-k,1)交集至少为1的方案+C(n-k,2)交集至少为2的方案...
ans=C(n,k)*sum(C(n-k,i)*(2^(2^(n-i-k))-1)) 0<=i<=n-k
i=0是任意选的方案数
处理组合数可以用公式
其中涉及逆元,可以用递推求逆元数组
因为mod是一个质数,也可以考虑费马小定理 推荐blog
https://www.cnblogs.com/candy99/p/6613808.html
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 1000100
#define mod 1000000007
using namespace std;
int fac[N],n,k,now=2; ll quick(int a,int b){
ll c=1;
while(b){
if(b&1)c=(c*a)%mod;
a=(1ll*a*a)%mod;b>>=1;
}
return c;
} int C(int n,int m){
int ans=fac[n];
ll div1=quick(fac[m],mod-2);
ll div2=quick(fac[n-m],mod-2);
ans=(ans*div1)%mod;
ans=(ans*div2)%mod;
return ans;
}
int main(){
scanf("%d%d",&n,&k);
fac[0]=1;
for(int i=1;i<=n;i++)
fac[i]=(1ll*fac[i-1]*i)%mod;
n-=k;ll ans=0;
for(int i=n;~i;i--){
(ans+=1ll*(i&1?-1:1)*C(n,i)*(now-1))%=mod;
now=(1ll*now*now)%mod;
}
ans=(ans*C(n+k,k))%mod;
ans<0?ans+=mod:1;
cout<<ans;
return 0;
}
bzoj2839: 集合计数 容斥+组合的更多相关文章
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合
比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- [BZOJ2839]:集合计数(组合数学+容斥)
题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
随机推荐
- 使用XIB的UITableViewCell自适应,以及出现的问题进行解决
1.首先需要定义一个属性 @property (nonatomic, strong) UITableViewCell *prototypeCell; 2.在创建完tableView后加上如下代码 se ...
- 第四十三条:返回零长度的数组或者集合,而不是null
如果一个方法的返回值类型是集合或者数组 ,如果在方法内部需要返回的集合或者数组是零长度的,也就是没有实际对象在里面, 我们也应该放回一个零长度的数组或者集合,而不是返回null.如果返回了null,客 ...
- 从PRISM开始学WPF(三)Prism-Region?
从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...
- machine learning 之 导论 一元线性回归
整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Ar ...
- php框架中的phalcon框架的安装,及初步认识,从表单提交简单的数据到数据库中
php框架中的phalcon框架的安装,及初步认识,从表单提交简单的数据到数据库中 1.phalcon框架的安装: phalcon框架在windows本地安装可以利用wamp软件,安装之后可以查看对应 ...
- React 深入系列2:组件分类
文:徐超,<React进阶之路>作者 授权发布,转载请注明作者及出处 React 深入系列2:组件分类 React 深入系列,深入讲解了React中的重点概念.特性和模式等,旨在帮助大家加 ...
- 无用代码清除tip
测试提了个bug过来,说是有个ajax请求报404了. 我一看,后台代码被人删了,问了同事,因为实现机制变了,是应该删,但删多了. 把service和controller都恢复后,一个接口中除了我那个 ...
- Python第三方库的安装方法总结
源码安装 很多第三方库都是开源的,几乎都可以在github 或者 pypi上找到源码.找到源码格式大概都是 zip . tar.zip. tar.bz2格式的压缩包.解压这些包,进入解压好的文件夹,通 ...
- countUp.js-让数字动起来
先上一段示例代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- rocketmq番外篇(一):开发命令行
匠心零度 转载请注明原创出处,谢谢! 说在前面 虽然是以rocketmq引出的开发命令行,但是任何java应用如果需要都可以借鉴引用,也是通用技术. 主题 rocketmq使用例子 Apache Co ...