Description

Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各界的赞扬。

最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一个真龙天子的降生,带领正义打败邪恶。

骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出征的。

战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的情况),并且,使得这支骑士军团最具有战斗力。

为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。

Input

输入文件knight.in第一行包含一个正整数N,描述骑士团的人数。

接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力和他最痛恨的骑士。

Output

输出文件knight.out应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。

Sample Input

3

10 2

20 3

30 1

Sample Output

30

Hint

对于30%的测试数据,满足N ≤10;

对于60%的测试数据,满足N ≤100;

对于80%的测试数据,满足N ≤10 000。

对于100%的测试数据,满足N ≤1 000 000,每名骑士的战斗力都是不大于1 000 000的正整数。

Solution

显然关系可以看成若干联通块,联通块中最多只会有一个环,故整张图构成了一个基环树的森林,而对于一棵树,显然答案是很好用O(n)的时间计算得出的=> \(f[u][0]= \Sigma max(f[son][1],f[son][0]) ; f[u][1] =val[u]+\Sigma f[son][0]\),对于一棵基环树,只需要找出环,然后从环上某一点\(u\)开始做一次DP,然后从\(fa[u]\)做一次DP,这棵基环树的答案显然为\(max(f[u][0],f[fa[u]][0])\),然后对若干个基环树的答案求和即可。时间复杂度O(n).

Code

#include <stdio.h>
#define MN 1000005
#define R register
#define ll long long
#define file(x) freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);
#define end fclose(stdin);fclose(stdout)
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
bool vis[MN];int to[MN],nxt[MN],h[MN],en,n,val[MN],fa[MN];ll f[MN][2],ans;
inline void ins(int u,int v){to[++en]=v,nxt[en]=h[u],h[u]=en;}
inline ll max(ll a,ll b){return a>b?a:b;}
inline void dp(int u,int rt){
f[u][1]=val[u];f[u][0]=0;vis[u]=1;
for (R int i=h[u]; i; i=nxt[i])
if (to[i]!=rt){
dp(to[i],rt);
f[u][0]+=max(f[to[i]][0],f[to[i]][1]);
f[u][1]+=f[to[i]][0];
}
}
inline void pre(int u){
vis[u]=1;while(!vis[fa[u]]) u=fa[u],vis[u]=1;
dp(u,u);R ll tmp=f[u][0];u=fa[u];dp(u,u);
ans+=max(tmp,f[u][0]);
}
int main(){
n=read();for (R int i=1; i<=n; ++i) val[i]=read(),ins(fa[i]=read(),i);
for (R int i=1; i<=n; ++i) if (!vis[i]) pre(i);printf("%lld\n",ans);
return 0;
}

【BZOJ1040】【ZJOI2008】骑士的更多相关文章

  1. [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集

    骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...

  2. [BZOJ1040][ZJOI2008]骑士(环套树dp)

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5816  Solved: 2263[Submit][Status ...

  3. BZOJ1040: [ZJOI2008]骑士(奇环树,DP)

    题目: 1040: [ZJOI2008]骑士 解析: 假设骑士\(u\)讨厌骑士\(v\),我们在\(u\),\(v\)之间连一条边,这样我们就得到了一个奇环树(奇环森林),既然是一颗奇环树,我们就先 ...

  4. [BZOJ1040] [ZJOI2008]骑士 解题报告

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...

  5. BZOJ1040 [ZJOI2008]骑士

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战 ...

  6. 【环套树+树形dp】Bzoj1040 [ZJOI2008] 骑士

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...

  7. 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士

    基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...

  8. luogu2607/bzoj1040 [ZJOI2008]骑士 (基环树形dp)

    N个点,每个点发出一条边,那么这个图的形状一定是一个基环树森林(如果有重边就会出现森林) 那我做f[0][x]和f[1][x]分别表示对于x子树,x这个点选还是不选所带来的最大价值 然后就变成了这好几 ...

  9. BZOJ1040 [ZJOI2008]骑士 基环树林(环套树) 树形动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题意概括 有n个人,每一个人有一个最恨的人. 并且,每一个人有一个权值. 一个人不可以和他最恨的人同时被选中. 现在请你求出在 ...

  10. 2018.11.06 bzoj1040: [ZJOI2008]骑士(树形dp)

    传送门 由题可知给出的是基环森林. 因此对于每个基环森林找到环断开dpdpdp两次就行了. 代码: #include<bits/stdc++.h> using namespace std; ...

随机推荐

  1. 201621123040《Java程序设计》第七周学习总结

    1.本周学习总结 1.1思维导图:Java图形界面总结 2.书面作业 2.1GUI中的事件处理 2.1.1写出事件处理模型中最重要的几个关键词. 关键词:事件 事件源 事件监听器 2.1.2任意编写事 ...

  2. Beta阶段敏捷冲刺每日报告——Day0

    下一阶段需要改进完善的功能: 搜索框在Firefox和IE中显示不正常问题 下一阶段新增的功能: ToDoList功能:针对博主的功能,在博主登录之后可以添加和修改待办事项,每个事项包括标题.内容.日 ...

  3. Beta预备会议

    1. 讨论组长是否重选的议题和结论. 我们小组决定组长更换为林洋洋同学,他Web开发经验比较丰富,对任务的分配会更加明确,由于上一阶段中存在进度偏慢的问题,我们希望在Beta阶段通过更好的分工安排来保 ...

  4. C语言--第六周作业

    一.高速公路超速罚款 1.代码 #include<stdio.h> int main() { int a,b; float c; scanf("%d %d",& ...

  5. 亚马逊AWS学习——EC2的自定义VPC配置

    1 网络配置 EC2即亚马逊AWS云服务中的虚拟主机.创建EC2实例时如果使用的默认VPC并分配了公有IP是可以上网的.但我们经常需要自定义的网络环境,这时就需要自己定义VPC和子网了. 1.1 配置 ...

  6. Swift 2.2 的新特性

    导读:本文来自SwiftGG翻译组,作者@walkingway基于苹果Swift官方博客中Ted Kremenek所撰写的"Swift 2.2 Released!"文章进行了关于S ...

  7. Cypher语法

    cypher是neo4j官网提供的声明式查询语言,非常强大,用它可以完成任意的图谱里面的查询过滤,我们知识图谱的一期项目 基本开发完毕,后面会陆续总结学习一下neo4j相关的知识.今天接着上篇文章来看 ...

  8. 在360、UC等浏览器,img不加载原因

    问题:图片在360浏览器不被加载,在UC浏览器强制不显示. 前言不多说,直接上图. 360浏览器显示情况: UC浏览器显示情况: 由以上两张截图可以看到,在360浏览器,banner图片处根本没有加载 ...

  9. vue 内联样式style中的background

    在我们使用vue开发的时候   有很多时候我们需要用到背景图 这个时候会直接使用 内联样式 直接把你拿到的数据拼接上去 注意  在vue中直接使用style时 花括号一定别忘记 还有就是你的url一定 ...

  10. PHP分页初探 一个最简单的PHP分页代码的简单实现

    PHP分页代码在各种程序开发中都是必须要用到的,在网站开发中更是必选的一项. 要想写出分页代码,首先你要理解SQL查询语句:select * from goods limit 2,7.PHP分页代码核 ...