[NOIP2016]愤怒的小鸟 D2 T3
Description
Kiana最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。
当小鸟落回地面(即x轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。
如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。
例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
Input
第一行包含一个正整数T,表示游戏的关卡总数。
下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含两个正实数(xi,yi),表示第i只小猪坐标为(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。
如果m=0,表示Kiana输入了一个没有任何作用的指令。
如果m=1,则这个关卡将会满足:至多用⌈n/3+1⌉只小鸟即可消灭所有小猪。
如果m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少⌊n/3⌋只小猪。
保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。
上文中,符号⌈c⌉和⌊c⌋分别表示对c向上取整和向下取整
Output
对每个关卡依次输出一行答案。
输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量
Sample Input
Sample Output
HINT
【样例解释】
这组数据中一共有两个关卡。
第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00,3.00)和 (3.00,3.00),只需发射一只飞行轨迹为y = -x2 + 4x的小鸟即可消灭它们。
第二个关卡中有5只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x2 + 6x上,故Kiana只需要发射一只小鸟即可消灭所有小猪。
【子任务】
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
struct node
{
double x,y;
}map[];
int f[][];
int dp[<<],T,n,m;
double A(node a,node b)
{
return (a.y*b.x-b.y*a.x)/((a.x*a.x*b.x)-(b.x*b.x*a.x));
}
double B(double a,node b)
{
return (b.y-(a*b.x*b.x))/b.x;
}
int same(double x,double y)
{
if(fabs(x-y)<=0.0000001)return ;
return ;
}
double Y(double a,double b,double x)
{
return (a*x*x)+(b*x);
}
void init()
{
memset(f,,sizeof(f));
memset(dp,0x3f,sizeof(dp));
memset(map,,sizeof(map));
}
int main()
{
scanf("%d",&T);
while(T>)
{
T--;
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&map[i].x,&map[i].y);
}
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
double a=A(map[i],map[j]);
double b=B(a,map[i]);
if(a>=)continue;
for(int k=;k<=n;k++)
{
if(same(Y(a,b,map[k].x),map[k].y)==)
{
f[i][j]=f[i][j]|(<<(k-));
}
}
}
}
dp[]=;
dp[]=;
for(int S=;S<=<<n;++S)
{
for(int i=;i<=n;i++)
{
if(!(S&(<<(i-))))
{
dp[S|(<<(i-))]=min(dp[S|(<<(i-))],dp[S]+);
for(int j=i+;j<=n;j++)
{
dp[S|f[i][j]]=min(dp[S|f[i][j]],dp[S]+);
}
}
}
}
printf("%d\n",dp[(<<n)-]);
}
}
[NOIP2016]愤怒的小鸟 D2 T3的更多相关文章
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- [Noip2016]蚯蚓 D2 T2 队列
[Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...
- [NOIP2015]运输计划 D2 T3 LCA+二分答案+差分数组
[NOIP2015]运输计划 D2 T3 Description 公元2044年,人类进入了宇宙纪元. L国有n个星球,还有n-1条双向航道,每条航道建立在两个星球之间,这n-1条航道连通了L国的所有 ...
- 【NOIP2016】Day1 T3 换教室(期望DP)
题目背景 NOIP2016 提高组 Day1 T3 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n 节课程安排在 n 个时间段上. ...
- 【洛谷P2831】[NOIP2016]愤怒的小鸟
愤怒的小鸟 题目链接 本来是刷状压DP的,然而不会.. 搜索是比较好想的,直接dfs就行了 我们可以知道两只猪确定一条抛物线 依次处理每一只猪,有以下几种方法: 1.先看已经建立的抛物线是否能打到这只 ...
- NOIP2016愤怒的小鸟 [状压dp]
愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...
- [NOIP2016]愤怒的小鸟
题目描述 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形 ...
- Noip2016愤怒的小鸟(状压DP)
题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...
- luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)
由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...
随机推荐
- webpack 4.x 遇到的错误
由于之前重装电脑,很多之前的小Demo 现在都跑不起来.特别是webpack一直在报错. webpack 安装node 全局安装webpack,webpack-cli(一定要全局安装) 项目初始化 w ...
- Eclipse两种部署web项目方法
一).首先使用J2EE的Eclipse的Servers(可以从show view中取出). 1).通过Eclipse建立一个Dynamic Web Project 2).通过Servers视图来创建一 ...
- MTCNN人脸检测 附完整C++代码
人脸检测 识别一直是图像算法领域一个主流话题. 前年 SeetaFace 开源了人脸识别引擎,一度成为热门话题. 虽然后来SeetaFace 又放出来 2.0版本,但是,我说但是... 没有训练代码, ...
- JS基础:闭包和作用域链
简介 一个定义在函数内部的函数与包含它的外部函数构成了闭包,内部函数可以访问外部函数的变量,这些变量将一直保存在内存中,直到无法再引用这个内部函数. 例如: var a = 0; function o ...
- MongoDB使用过程中的一些问题
1.MongoDB配置修改不生效的问题:今天因为某个原因,需要修改mongodb的配置文件. 改完以后,在init.d里面restart命令重启server,后来stop又start重启server. ...
- leetCode刷题(使用链表做加法)
Input: (2 -> 4 -> 3) + (5 -> 6 -> 4) Output: 7 -> 0 -> 8 Explanation: 342 + 465 = ...
- js基础进阶--关于setTimeout的思考
欢迎访问我的个人博客:http://www.xiaolongwu.cn 先热身 看看下面的额代码会打印出什么? for (var i = 0; i < 5; i++) { setTimeout( ...
- Tomcat 调优方案
Tomcat的默认配置,性能并不是最优的,我们可以通过优化tomcat以此来提高网站的并发能力.提高Tomcat的性能可以分为两个方向. 服务器资源 服务器所能提供CPU.内存.硬盘的性能对处理能力有 ...
- 配置teredo,启用ipv6,xx-net
最近使用XX-NET科学上网 ,提示要配置使用IPv6.根据github的上win10配置ipv6方式(https://github.com/XX-net/XX-Net/wiki/IPv6-Win10 ...
- Docker的安装和测试
1,Docker安装 Docker是啥,以及其与虚拟机的对比,就不介绍了,网上有很多资源可以学习和了解. 本篇文章重点介绍Docker的安装和测试使用. Docker的安装,分为离线安装和在线安装两种 ...