f[i]:当前已拥有i种邮票,还需要买的邮票数的期望值。
g[i]:当前已拥有i种邮票,还需要的钱的期望值。
每张邮票初始都是1元钱,每买一张邮票,还没购买的邮票每张都涨价1元。 
f[i]=1+(n-i)/n*f[i+1]+i/n*f[i]
--->>f[i]=f[i+1]+n/(n-i)
g[i]=1+(n-i)/n*(g[i+1]+f[i+1])+i/n*(g[i]+f[i])--->>g[i]=f[i+1]+i/(n-i)*f[i]+g[i+1]+n/(n-i);
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
double f[10005],g[10005];
int main()
{
scanf("%d",&n);
for(int i=n-1;i>=0;i--)
f[i]=f[i+1]+n/(1.0*(n-i));
for(int i=n-1;i>=0;i--)
g[i]=n/(1.0*(n-i))+f[i+1]+g[i+1]+(i/(1.0*(n-i)))*f[i];
printf("%0.2lf\n",g[0]);
return 0;
}

bzoj 1426 收集邮票的更多相关文章

  1. BZOJ 1426: 收集邮票 [DP 期望 平方]

    传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮 ...

  2. bzoj 1426:收集邮票 求平方的期望

    显然如果收集了k天,ans=k*(k+1)/2=(k^2+k)/2.那么现在要求的就是这个东西的期望. 设f[i]表示已有i张邮票,收集到n张的期望次数,g[i]表示已有i张邮票,收集到n张的次数的平 ...

  3. BZOJ 1426: 收集邮票 数学期望 + DP

    Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...

  4. BZOJ 1426 收集邮票 ——概率DP

    $f(i)$表示现在有$i$张,买到$n$张的期望 所以$f(i)=f(i+1)+\frac {n}{n-i}$ 费用提前计算,每张邮票看做一元,然后使后面每一张加1元 $g(i)$表示当前为$i$张 ...

  5. bzoj 1426: 收集邮票【期望dp】

    我太菜了,看的hzwer的blog才懂 大概是设f[i]表示已经拥有了i张邮票后期望还要买的邮票数,这个转移比较简单是f[i]=f[i]*(i/n)+f[i+1]*((n-i)/n)+1 然后设g[i ...

  6. 【BZOJ】1426: 收集邮票 期望DP

    [题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...

  7. 【BZOJ-1426】收集邮票 概率与期望DP

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 261  Solved: 209[Submit][Status][Discuss] ...

  8. BZOJ 1426--收集邮票(概率与期望&DP)

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 504  Solved: 417[Submit][Status][Discuss] ...

  9. 【BZOJ1426】收集邮票 期望

    [BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...

随机推荐

  1. golang实现文字云算法

    golang实现文字云算法 项目链接 https://github.com/bangbaoshi/wordcloud 效果图 测试步骤如下 git clone https://github.com/b ...

  2. 如何通过jQuery获取一个没有定高度的元素---------的自适应高度(offsetHeight的正确使用方法)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. javascript学习(三)——常用方法(2)

    一.兼容性较高的浏览器页面关闭 //关闭网页,不支持火狐(火狐返回上次浏览页面)   //FireFox非window.open()等弹出页面,需要在地址栏中输入about:config, 然后将do ...

  4. Strom topology 设计的演进

    场景:采集日志数据,日志数据有多个字段组成,需求是根据日志数据中的N个字段(维度),去统计指标数据(个数.平均值)等.

  5. MySQL Join 的实现原理

    在寻找Join 语句的优化思路之前,我们首先要理解在MySQL 中是如何来实现Join 的,只要理解了实现原理之后,优化就比较简单了.下面我们先分析一下MySQL 中Join 的实现原理.在MySQL ...

  6. Javascript二(函数详解)

    一.函数            Javascript是一门基于对象的脚本语言,代码复用的单位是函数,但它的函数比结构化程序设计语言的函数功能更丰富.JavaScript语言中的函数是"一等公 ...

  7. JS基础:闭包和作用域链

    简介 一个定义在函数内部的函数与包含它的外部函数构成了闭包,内部函数可以访问外部函数的变量,这些变量将一直保存在内存中,直到无法再引用这个内部函数. 例如: var a = 0; function o ...

  8. (转) windows下 安装 rabbitMQ 及操作常用命令

    该博客转载自:https://blog.csdn.net/gy__my/article/details/78295943 原作者:Eric Li  出处:http://www.cnblogs.com/ ...

  9. DjangoRestFramework的外键反向关系序列化的一个问题

    先用文档中的样例: Models定义: class Album(models.Model): album_name = models.CharField(max_length=100) artist ...

  10. 第一章 python介绍、变量、数据类型、流程控制语句等

    一.python介绍 1.python的诞生 python是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum(龟叔)于1989年发明,第一个公开发行版发行于1991年. ...