BZOJ_3872_[Poi2014]Ant colony_dfs

Description

There is an entrance to the ant hill in every chamber with only one corridor leading into (or out of) it. At each entry, there are g groups of m1,m2,...,mg ants respectively. These groups will enter the ant hill one after another, each successive group entering once there are no ants inside. Inside the hill, the ants explore it in the following way:
Upon entering a chamber with d outgoing corridors yet unexplored by the group, the group divides into d groups of equal size. Each newly created group follows one of the d corridors. If d=0, then the group exits the ant hill.
If the ants cannot divide into equal groups, then the stronger ants eat the weaker until a perfect division is possible. Note that such a division is always possible since eventually the number of ants drops down to zero. Nothing can stop the ants from allowing divisibility - in particular, an ant can eat itself, and the last one remaining will do so if the group is smaller than d.
The following figure depicts m ants upon entering a chamber with three outgoing unexplored corridors, dividing themselves into three (equal) groups of floor(m/3) ants each.
A hungry anteater dug into one of the corridors and can now eat all the ants passing through it. However, just like the ants, the anteater is very picky when it comes to numbers. It will devour a passing group if and only if it consists of exactly k ants. We want to know how many ants the anteater will eat.
给定一棵有n个节点的树。在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁。这些蚂蚁会相继进入树中,而且要保证每一时刻每个节点最多只有一群蚂蚁。这些蚂蚁会按以下方式前进:
·在即将离开某个度数为d+1的点时,该群蚂蚁有d个方向还没有走过,这群蚂蚁就会分裂成d群,每群数量都相等。如果d=0,那么蚂蚁会离开这棵树。
·如果蚂蚁不能等分,那么蚂蚁之间会互相吞噬,直到可以等分为止,即一群蚂蚁有m只,要分成d组,每组将会有floor(m/d)只,如下图。
一只饥饿的食蚁兽埋伏在一条边上,如果有一群蚂蚁通过这条边,并且数量恰为k只,它就会吞掉这群蚂蚁。请计算一共有多少只蚂蚁会被吞掉。

Input

The first line of the standard input contains three integers n, g, k (2<=n,g<=1000000, 1<=k<=10^9), separated by single spaces. These specify the number of chambers, the number of ant groups and the number of ants the anteater devours at once. The chambers are numbered from 1 to n.
The second line contains g integers m[1],m[2],...,m[g](1<=m[i]<=10^9), separated by single spaces, where m[i] gives the number of ants in the i-th group at every entrance to the ant hill. The n-1 lines that follow describe the corridors within the ant hill; the i-th such line contains two integers a[i],b[i] (1<=a[i],b[i]<=n), separated by a single space, that indicate that the chambers no.a[i] and b[i] are linked by a corridor. The anteater has dug into the corridor that appears first on input.
第一行包含三个整数n,g,k,表示点数、蚂蚁群数以及k。
第二行包含g个整数m[1],m[2],...,m[g],表示每群蚂蚁中蚂蚁的数量。
接下来n-1行每行两个整数,表示一条边,食蚁兽埋伏在输入的第一条边上。

Output

Your program should print to the standard output a single line containing a single integer: the number of ants eaten by the anteater.
一个整数,即食蚁兽能吃掉的蚂蚁的数量。

Sample Input

7 5 3
3 4 1 9 11
1 2
1 4
4 3
4 5
4 6
6 7

Sample Output

21

 倒过来做,以最后输入的两端为根dfs整棵树。
求出每个点的蚂蚁数目范围,满足最后走到根时恰好剩下k个蚂蚁。
对于最大值upper[to[i]]=upper[x]*(out[x]-1)+out[x]-2.out[x]表示x的度数。
对于最小值lower[to[i]]=lower[x]*(out[x]-1)。
可能中间过程爆longlong,当最小值比总数大的时候就不必继续dfs下去。
然后对于每个初始的叶子结点二分查找一下合法蚂蚁的个数。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9')s=nc();
while(s>='0'&&s<='9')x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
#define N 1000050
typedef long long ll;
int head[N],to[N<<1],nxt[N<<1],out[N],cnt;
int m[N],n,g,k,root1,root2;
ll upper[N],lower[N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; out[u]++;
}
void dfs(int x,int y) {
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
upper[to[i]]=upper[x]*(out[x]-1)+out[x]-2;
if(upper[to[i]]<0) upper[to[i]]=m[g];
upper[to[i]]=min(upper[to[i]],1ll*m[g]);
lower[to[i]]=lower[x]*(out[x]-1);
if(lower[to[i]]<=m[g]&&lower[to[i]]>=0)
dfs(to[i],x);
}
}
}
int search(ll x) {
int l=1,r=g+1;
while(l<r) {
int mid=(l+r)>>1;
if(m[mid]<=x) l=mid+1;
else r=mid;
}
return l-1;
}
int main() {
n=rd(); g=rd(); k=rd();
int i,x,y;
for(i=1;i<=g;i++) m[i]=rd();
sort(m+1,m+g+1);
root1=rd(); root2=rd();
add(root1,root2); add(root2,root1);
for(i=2;i<n;i++) {
x=rd(); y=rd();
add(x,y); add(y,x);
}
upper[root1]=upper[root2]=lower[root1]=lower[root2]=k;
dfs(root1,root2);
dfs(root2,root1);
ll ans=0;
for(i=1;i<=n;i++) if(out[i]==1) ans+=search(upper[i])-search(lower[i]-1);
printf("%lld\n",ans*k);
}

BZOJ_3872_[Poi2014]Ant colony_dfs的更多相关文章

  1. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

  2. bzoj 3872: [Poi2014]Ant colony -- 树形dp+二分

    3872: [Poi2014]Ant colony Time Limit: 30 Sec  Memory Limit: 128 MB Description   There is an entranc ...

  3. 【BZOJ3872】[Poi2014]Ant colony 树形DP+二分

    [BZOJ3872][Poi2014]Ant colony Description 给定一棵有n个节点的树.在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁.这些蚂蚁会相继进入树中, ...

  4. [bzoj3872][Poi2014]Ant colony_树形dp

    Ant colony bzoj-3872 Poi-2014 题目大意:说不明白.....题目链接 注释:略. 想法:两个思路都行. 反正我们就是要求出每个叶子节点到根节点的每个路径权值积. 可以将边做 ...

  5. [POI2014]Ant colony

    题目大意: 给定一棵$n(n\le10^6)$个结点的树.在每个叶子结点,有$g$群蚂蚁要从外面进来,其中第$i$群有$m_i$只蚂蚁.这些蚂蚁依次爬树(一群蚂蚁爬完后才会爬另一群),若当前经过结点度 ...

  6. bzoj 3872 [Poi2014]Ant colony——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 可以倒推出每个叶子节点可以接受的值域.然后每个叶子二分有多少个区间符合即可. 注意一开 ...

  7. bzoj 3872: [Poi2014]Ant colony【树形dp+二分】

    啊我把分子分母混了WA了好几次-- 就是从食蚁兽在的边段成两棵树,然后dp下去可取的蚂蚁数量区间,也就是每次转移是l[e[i].to]=l[u](d[u]-1),r[e[i].to]=(r[u]+1) ...

  8. $bzoj3872\ [Poi2014]\ Ant\ colony$ 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 一年过去了依然没有头绪,,,$gql$的$NOIp$必将惨败了$kk$. 考虑倒推,因为知道知道除数和答案,所以可以推出被除数的范围,然后一路推到叶 ...

  9. POI2014题解

    POI2014题解 [BZOJ3521][Poi2014]Salad Bar 把p当作\(1\),把j当作\(-1\),然后做一遍前缀和. 一个合法区间\([l,r]\)要满足条件就需要满足所有前缀和 ...

随机推荐

  1. Numpy快速入门——shape属性,你秒懂了吗

    前言 对于学习NumPy(Numeric Python),首先得明确一点是:Numpy 是用来处理矩阵数组的. shape 属性 对于shape函数,官方文档是这么说明: the dimensions ...

  2. kafka 集群

    在kafka中,我们能创建多种类型的集群,一般如下: 单节点——单个broker集群 单节点——多broker集群 多结点——多broker集群 kafka集群中主要有五个组件: Topic:主题主要 ...

  3. 【.NET Core】ASP.NET Core之IdentityServer4(1):快速入门

    [.NET Core]ASP.NET Core之IdentityServer4 本文中的IdentityServer4基于上节的jenkins 进行docker自动化部署. 使用了MariaDB,EF ...

  4. 6 Tools To Jump Start Your Video Content Marketing

    http://www.forbes.com/sites/drewhendricks/2014/10/16/6-tools-to-jump-start-your-video-content-market ...

  5. SOFA 源码分析 — 扩展机制

    前言 我们在之前的文章中已经稍微了解过 SOFA 的扩展机制,我们也说过,一个好的框架,必然是易于扩展的.那么 SOFA 具体是怎么实现的呢? 一起来看看. 如何使用? 看官方的 demo: 1.定义 ...

  6. kaggle入门项目:Titanic存亡预测 (一)比赛简介

    自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之 ...

  7. 第三章之S5PV210串口初始化

    1,在start.S中执行373行b lowlevel_init跳转到/board/samsung/goni/lowlevel.S中,此代码中初始化一样硬件. 找到241行,此行执行URAT初始化,如 ...

  8. Net Core动态加载webservice/WCF

    1.动态加载的目的 前端时间和顺丰对接了个项目(PS:顺丰的开发对外能力真的是掉粉),用的webservice 测试时用的无固定IP访问,正式版需要固定IP访问,我的理解是web服务都是全网络可以访问 ...

  9. spring中注解式事务不生效的问题

    常用的解决方法可以百度,我针对我的问题描述一下 Mysql中InnoDB引擎才支持事务, MyISAM不支持事务. 当你尝试了各种方法解决spring中注解式事务不生效时, 一定要查看一下数据库中表的 ...

  10. Linux文本处理命令 -- grep

    简介 grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它 ...