BZOJ_3872_[Poi2014]Ant colony_dfs

Description

There is an entrance to the ant hill in every chamber with only one corridor leading into (or out of) it. At each entry, there are g groups of m1,m2,...,mg ants respectively. These groups will enter the ant hill one after another, each successive group entering once there are no ants inside. Inside the hill, the ants explore it in the following way:
Upon entering a chamber with d outgoing corridors yet unexplored by the group, the group divides into d groups of equal size. Each newly created group follows one of the d corridors. If d=0, then the group exits the ant hill.
If the ants cannot divide into equal groups, then the stronger ants eat the weaker until a perfect division is possible. Note that such a division is always possible since eventually the number of ants drops down to zero. Nothing can stop the ants from allowing divisibility - in particular, an ant can eat itself, and the last one remaining will do so if the group is smaller than d.
The following figure depicts m ants upon entering a chamber with three outgoing unexplored corridors, dividing themselves into three (equal) groups of floor(m/3) ants each.
A hungry anteater dug into one of the corridors and can now eat all the ants passing through it. However, just like the ants, the anteater is very picky when it comes to numbers. It will devour a passing group if and only if it consists of exactly k ants. We want to know how many ants the anteater will eat.
给定一棵有n个节点的树。在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁。这些蚂蚁会相继进入树中,而且要保证每一时刻每个节点最多只有一群蚂蚁。这些蚂蚁会按以下方式前进:
·在即将离开某个度数为d+1的点时,该群蚂蚁有d个方向还没有走过,这群蚂蚁就会分裂成d群,每群数量都相等。如果d=0,那么蚂蚁会离开这棵树。
·如果蚂蚁不能等分,那么蚂蚁之间会互相吞噬,直到可以等分为止,即一群蚂蚁有m只,要分成d组,每组将会有floor(m/d)只,如下图。
一只饥饿的食蚁兽埋伏在一条边上,如果有一群蚂蚁通过这条边,并且数量恰为k只,它就会吞掉这群蚂蚁。请计算一共有多少只蚂蚁会被吞掉。

Input

The first line of the standard input contains three integers n, g, k (2<=n,g<=1000000, 1<=k<=10^9), separated by single spaces. These specify the number of chambers, the number of ant groups and the number of ants the anteater devours at once. The chambers are numbered from 1 to n.
The second line contains g integers m[1],m[2],...,m[g](1<=m[i]<=10^9), separated by single spaces, where m[i] gives the number of ants in the i-th group at every entrance to the ant hill. The n-1 lines that follow describe the corridors within the ant hill; the i-th such line contains two integers a[i],b[i] (1<=a[i],b[i]<=n), separated by a single space, that indicate that the chambers no.a[i] and b[i] are linked by a corridor. The anteater has dug into the corridor that appears first on input.
第一行包含三个整数n,g,k,表示点数、蚂蚁群数以及k。
第二行包含g个整数m[1],m[2],...,m[g],表示每群蚂蚁中蚂蚁的数量。
接下来n-1行每行两个整数,表示一条边,食蚁兽埋伏在输入的第一条边上。

Output

Your program should print to the standard output a single line containing a single integer: the number of ants eaten by the anteater.
一个整数,即食蚁兽能吃掉的蚂蚁的数量。

Sample Input

7 5 3
3 4 1 9 11
1 2
1 4
4 3
4 5
4 6
6 7

Sample Output

21

 倒过来做,以最后输入的两端为根dfs整棵树。
求出每个点的蚂蚁数目范围,满足最后走到根时恰好剩下k个蚂蚁。
对于最大值upper[to[i]]=upper[x]*(out[x]-1)+out[x]-2.out[x]表示x的度数。
对于最小值lower[to[i]]=lower[x]*(out[x]-1)。
可能中间过程爆longlong,当最小值比总数大的时候就不必继续dfs下去。
然后对于每个初始的叶子结点二分查找一下合法蚂蚁的个数。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9')s=nc();
while(s>='0'&&s<='9')x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
#define N 1000050
typedef long long ll;
int head[N],to[N<<1],nxt[N<<1],out[N],cnt;
int m[N],n,g,k,root1,root2;
ll upper[N],lower[N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; out[u]++;
}
void dfs(int x,int y) {
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
upper[to[i]]=upper[x]*(out[x]-1)+out[x]-2;
if(upper[to[i]]<0) upper[to[i]]=m[g];
upper[to[i]]=min(upper[to[i]],1ll*m[g]);
lower[to[i]]=lower[x]*(out[x]-1);
if(lower[to[i]]<=m[g]&&lower[to[i]]>=0)
dfs(to[i],x);
}
}
}
int search(ll x) {
int l=1,r=g+1;
while(l<r) {
int mid=(l+r)>>1;
if(m[mid]<=x) l=mid+1;
else r=mid;
}
return l-1;
}
int main() {
n=rd(); g=rd(); k=rd();
int i,x,y;
for(i=1;i<=g;i++) m[i]=rd();
sort(m+1,m+g+1);
root1=rd(); root2=rd();
add(root1,root2); add(root2,root1);
for(i=2;i<n;i++) {
x=rd(); y=rd();
add(x,y); add(y,x);
}
upper[root1]=upper[root2]=lower[root1]=lower[root2]=k;
dfs(root1,root2);
dfs(root2,root1);
ll ans=0;
for(i=1;i<=n;i++) if(out[i]==1) ans+=search(upper[i])-search(lower[i]-1);
printf("%lld\n",ans*k);
}

BZOJ_3872_[Poi2014]Ant colony_dfs的更多相关文章

  1. [BZOJ3872][Poi2014]Ant colony

    [BZOJ3872][Poi2014]Ant colony 试题描述 There is an entrance to the ant hill in every chamber with only o ...

  2. bzoj 3872: [Poi2014]Ant colony -- 树形dp+二分

    3872: [Poi2014]Ant colony Time Limit: 30 Sec  Memory Limit: 128 MB Description   There is an entranc ...

  3. 【BZOJ3872】[Poi2014]Ant colony 树形DP+二分

    [BZOJ3872][Poi2014]Ant colony Description 给定一棵有n个节点的树.在每个叶子节点,有g群蚂蚁要从外面进来,其中第i群有m[i]只蚂蚁.这些蚂蚁会相继进入树中, ...

  4. [bzoj3872][Poi2014]Ant colony_树形dp

    Ant colony bzoj-3872 Poi-2014 题目大意:说不明白.....题目链接 注释:略. 想法:两个思路都行. 反正我们就是要求出每个叶子节点到根节点的每个路径权值积. 可以将边做 ...

  5. [POI2014]Ant colony

    题目大意: 给定一棵$n(n\le10^6)$个结点的树.在每个叶子结点,有$g$群蚂蚁要从外面进来,其中第$i$群有$m_i$只蚂蚁.这些蚂蚁依次爬树(一群蚂蚁爬完后才会爬另一群),若当前经过结点度 ...

  6. bzoj 3872 [Poi2014]Ant colony——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 可以倒推出每个叶子节点可以接受的值域.然后每个叶子二分有多少个区间符合即可. 注意一开 ...

  7. bzoj 3872: [Poi2014]Ant colony【树形dp+二分】

    啊我把分子分母混了WA了好几次-- 就是从食蚁兽在的边段成两棵树,然后dp下去可取的蚂蚁数量区间,也就是每次转移是l[e[i].to]=l[u](d[u]-1),r[e[i].to]=(r[u]+1) ...

  8. $bzoj3872\ [Poi2014]\ Ant\ colony$ 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 一年过去了依然没有头绪,,,$gql$的$NOIp$必将惨败了$kk$. 考虑倒推,因为知道知道除数和答案,所以可以推出被除数的范围,然后一路推到叶 ...

  9. POI2014题解

    POI2014题解 [BZOJ3521][Poi2014]Salad Bar 把p当作\(1\),把j当作\(-1\),然后做一遍前缀和. 一个合法区间\([l,r]\)要满足条件就需要满足所有前缀和 ...

随机推荐

  1. Java + Selenium + TestNG + Maven

    环境准备: 1. Java: Install Java jdk: Version: java 1.8 or aboveConfigure Java Environment Variables:Add ...

  2. majority element(数组中找出出现次数最多的元素)

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  3. eclipse中tomcat内存溢出设置

    Eclipse里启动Tomcat,配置内存大小 2009年12月11日 星期五 10:50 一般安装完eclipse之后,在安装目录下你应该可以看到有一个 eclipse.ini 文件,对了,就是在这 ...

  4. Hibernate中的对象有三种状态

    Hibernate中的对象有三种状态: 瞬时状态 (Transient),持久状态 (Persistent), 1. 脱管状态 (Detached) 1. 1. 瞬时状态 (Transient) 由  ...

  5. Python基本数据类型之列表、元组、字典、集合及其魔法

    列表 1.列表可存放任何东西,并且可修改 2.列表有序 3.列表支持索引与切片 4.支持for,while循环,所以列表为可迭代对象 5支持in操作,判断元素是否在列表中 6可多重索引嵌套列表 7.字 ...

  6. myBatis之入门示例

    1. myBatis目录结构: --src ---entity [POJO类] ---mappers [映射类] ----*Mapper.java [方法接口,相当于Dao] ----*Mapper. ...

  7. 苹果公司揭秘首批列入 Swift 源代码兼容性开源项目清单

    源代码兼容性是 Swift 未来的目标.为了实现这一目标,(苹果公司的 swift 编译器团队)建立了一个源兼容性测试套件,用于根据 Swift 源代码(逐渐增加)语料库对编译器进行回归测试更改. 添 ...

  8. AWS技术会议笔记

    Intel和云: SDI:软件定义架构 3D-XPointer:可以媲美内存速度的SSD 应用可以控制L3 Cache的使用 Helix物联网设备用 精益创业之路: 如何快速获得第一批用户---先要养 ...

  9. Windows10远程报错:由于CredSSP加密Oracle修正

    Windows10远程桌面连接 报错信息 : 网上找到方法 但是奈何是 "Win10家庭版" 不能使用这个办法,具体操作可以看最后的引用链接 !!!! 策略路径:"计算机 ...

  10. MVC5 框架 配置 盘古分词

    2018.5.10日记 1.将sql数据库的内容添加到索引库中, public static readonly IndexManager instance; //静态构造函数,CLR只执行一次 sta ...