Keras官方中文文档:Keras安装和配置指南(Linux)
关于计算机的硬件配置说明
推荐配置
如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置:
- 主板:X299型号或Z270型号
- CPU: i7-6950X或i7-7700K 及其以上高级型号
- 内存:品牌内存,总容量32G以上,根据主板组成4通道或8通道
- SSD: 品牌固态硬盘,容量256G以上
- 显卡:NVIDIA GTX TITAN(XP) NVIDIA GTX 1080ti、NVIDIA GTX TITAN、NVIDIA GTX 1080、NVIDIA GTX 1070、NVIDIA GTX 1060 (顺序为优先建议,并且建议同一显卡,可以根据主板插槽数量购买多块,例如X299型号主板最多可以采用×4的显卡)
- 电源:由主机机容量的确定,一般有显卡总容量后再加200W即可
最低配置
如果您是仅仅用于自学或代码调试,亦或是条件所限仅采用自己现有的设备进行开发,那么您的电脑至少满足以下几点:
CPU说明
- 大多数CPU目前支持多核多线程,那么如果您采用CPU加速,就可以使用多线程运算。这方面的优势对于服务器CPU志强系列尤为关键
显卡说明
- 如果您的显卡是非NVIDIA公司的产品或是NVIDIA GTX系列中型号的第一个数字低于6或NVIDIA的GT系列,都不建议您采用此类显卡进行加速计算,例如
NVIDIA GT 910、NVIDIA GTX 460等等。 - 如果您的显卡为笔记本上的GTX移动显卡(型号后面带有标识M),那么请您慎重使用显卡加速,因为移动版GPU容易发生过热烧毁现象。
- 如果您的显卡,显示的是诸如
HD5000,ATI 5650等类型的显卡,那么您只能使用CPU加速 - 如果您的显卡芯片为Pascal架构(
NVIDIA GTX 1080,NVIDIA GTX 1070等),您只能在之后的配置中选择CUDA 8.0
基本开发环境搭建
1. Linux 发行版
linux有很多发行版,本文强烈建议读者采用新版的Ubuntu 16.04 LTS
一方面,对于大多数新手来说Ubuntu具有很好的图形界面,与乐观的开源社区;另一方面,Ubuntu是Nvidia官方以及绝大多数深度学习框架默认开发环境。
个人不建议使用Ubuntu其他版本,由于GCC编译器版本不同,会导致很多依赖无法有效安装。
Ubuntu 16.04 LTS下载地址:http://www.ubuntu.org.cn/download/desktop
通过U盘安装好后,进行初始化环境设置。
2. Ubuntu初始环境设置
- 安装开发包
打开终端输入:
# 系统升级
>>> sudo apt update
>>> sudo apt upgrade
# 安装python基础开发包
>>> sudo apt install -y python-dev python-pip python-nose gcc g++ git gfortran vim
- 安装运算加速库
打开终端输入:
>>> sudo apt install -y libopenblas-dev liblapack-dev libatlas-base-dev
3. CUDA开发环境的搭建(CPU加速跳过)
如果您的仅仅采用cpu加速,可跳过此步骤
- 下载CUDA8.0
下载地址:https://developer.nvidia.com/cuda-downloads
之后打开终端输入:
>>> sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
>>> sudo apt update
>>> sudo apt -y install cuda
自动配置成功就好。
- 将CUDA路径添加至环境变量
在终端输入:
>>> sudo gedit /etc/profile
在profile文件中添加:
export CUDA_HOME=/usr/local/cuda-8.0
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
之后source /etc/profile即可
- 测试
在终端输入:
>>> nvcc -V
会得到相应的nvcc编译器相应的信息,那么CUDA配置成功了。(记得重启系统)
如果要进行cuda性能测试,可以进行:
>>> cd /usr/local/cuda/samples
>>> sudo make -j8
编译完成后,可以进samples/bin/.../.../...的底层目录,运行各类实例。
4. 加速库cuDNN(可选)
从官网下载需要注册账号申请,两三天批准。网盘搜索一般也能找到最新版。
Linux目前最新的版本是cudnn V6,但对于tensorflow的预编译版本还不支持这个最近版本,建议采用5.1版本,即是cudnn-8.0-win-x64-v5.1-prod.zip。
下载解压出来是名为cuda的文件夹,里面有bin、include、lib,将三个文件夹复制到安装CUDA的地方覆盖对应文件夹,在终端中输入:
>>> sudo cp include/cudnn.h /usr/local/cuda/include/
>>> sudo cp lib64/* /usr/local/cuda/lib64/
>>> cd /usr/local/cuda/lib64
>>> sudo ln -sf libcudnn.so.5.1.10 libcudnn.so.5
>>> sudo ln -sf libcudnn.so.5 libcudnn.so
>>> sudo ldconfig -v
Keras框架搭建
相关开发包安装
在终端中输入:
>>> sudo pip install -U --pre pip setuptools wheel
>>> sudo pip install -U --pre numpy scipy matplotlib scikit-learn scikit-image
>>> sudo pip install -U --pre tensorflow-gpu
# >>> sudo pip install -U --pre tensorflow ## CPU版本
>>> sudo pip install -U --pre keras
安装完毕后,输入python,然后输入:
>>> import tensorflow
>>> import keras
无错输出即可
Keras中mnist数据集测试
下载Keras开发包
>>> git clone https://github.com/fchollet/keras.git
>>> cd keras/examples/
>>> python mnist_mlp.py
程序无错进行,至此,keras安装完成。
艾伯特(http://www.aibbt.com/)国内第一家人工智能门户
Keras官方中文文档:Keras安装和配置指南(Linux)的更多相关文章
- Keras官方中文文档:Keras安装和配置指南(Windows)
这里需要说明一下,笔者不建议在Windows环境下进行深度学习的研究,一方面是因为Windows所对应的框架搭建的依赖过多,社区设定不完全:另一方面,Linux系统下对显卡支持.内存释放以及存储空间调 ...
- Keras官方中文文档:常见问题与解答
所属分类:Keras Keras FAQ:常见问题 如何引用Keras? 如何使Keras调用GPU? 如何在多张GPU卡上使用Keras "batch", "epoch ...
- Keras官方中文文档:keras后端Backend
所属分类:Keras Keras后端 什么是"后端" Keras是一个模型级的库,提供了快速构建深度学习网络的模块.Keras并不处理如张量乘法.卷积等底层操作.这些操作依赖于某种 ...
- Keras官方中文文档:函数式模型API
\ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...
- Keras官方中文文档:关于Keras模型
关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: ...
- Keras官方中文文档:序贯模型
快速开始序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是"一条路走到黑". 可以通过向Sequential模型传递一个layer的list来构造该模型: f ...
- Keras官方中文文档:序贯模型API
Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers ...
- React官方中文文档【安装】
https://reactjs.org/docs/getting-started.html //React官方文档地址 1.入门 此页面是React文档和相关资源的概述. React是一个用于构建用 ...
- 学习Python 新去处:Python 官方中文文档
Python 作为世界上最好用的语言,官方支持的文档一直没有中文.小伙伴们已经习惯了原汁原味的英文文档,但如果有官方中文文档,那么查阅或理解速度都会大大提升.本文将介绍隐藏在 Python 官网的中文 ...
随机推荐
- Leetcode刷题C#版之Toeplitz Matrix
题目: Toeplitz Matrix A matrix is Toeplitz if every diagonal from top-left to bottom-right has the sam ...
- FTP主动模式和被动模式
FTP主动模式和被动模式 FTP是仅基于TCP的服务,不支持UDP.与众不同的是FTP使用2个端口,一个数据端口和一个命令端口(也可叫做控制端口).通常来说这两个端口是21(命令端口)和20(数据端口 ...
- php正则判断字符串是否含有中文
<?php $str = '若你安好便是晴天'; if (preg_match('/^[\x{4e00}-\x{9fa5}]+$/u', $str)>0) { echo '全是中文'; } ...
- 原生Java代码拷贝目录
拷贝.移动文件(夹),有三方包commons-io可以用,但是有时候有自己的需求,只能使用原生java代码,这时可以用以下几种方式进行拷贝: 1.使用系统命令(Linux)调用 此种方式对操作系统有要 ...
- 借腾讯开源 VasDolly,谈谈 Android 签名和多渠道打包的原理!
一.前言 Hi,大家好,我是承香墨影! 当我们需要发布一款 App 到应用市场的时候,一般需要我们针对不同的市场生产不同的渠道包,它们使用的是同一套代码,只是会包含一些各自的渠道信息,用于我们做数据分 ...
- Activiti中的log4j(slf4j)的配置
今天试了一下在Activiti中使用log4j来进行配置发现这个会出现问题,其实Activiti中的日志系统是采用的是slf4j而不是log4j 然后使用slf4j驱动log4j来做的 通过Proce ...
- toString 方法在数组中的使用
对于一个一维数组,他在转换成字符串的时候应该调用Arrays.toString(); 对于一个多维数组,他在转换成字符串的时候应该调用Arrays.deepToString(); 实例: packag ...
- web2 - JavaScript
JavaScript 知识要点 参考教材一 参考教材二 参考教材三 1.JavaScript 和 Java 的关系? 2.JavaScript 在编程中可以做什么? 3.如何在 html 中使用 Ja ...
- Qt Create or VS 2015 使用 Opencv330 相机静态库链接错误如何解决?
查看链接库,添加 vfw32.lib 即可.
- BZOJ3223/洛谷P3391 - 文艺平衡树
BZOJ链接 洛谷链接 题意 模板题啦~2 代码 //文艺平衡树 #include <cstdio> #include <algorithm> using namespace ...