ROS_Kinetic_x ROS栅格地图庫 Grid Map Library
源自:https://github.com/ethz-asl/grid_map
Grid Map
Overview
This is a C++ library with ROS interface to manage two-dimensional grid maps with multiple data layers. It is designed for mobile robotic mapping to store data such as elevation, variance, color, friction coefficient, foothold quality, surface normal, traversability etc. It is used in theRobot-Centric Elevation Mapping package designed for rough terrain navigation.
Features:
- Multi-layered: Developed for universal 2.5-dimensional grid mapping with support for any number of layers.
- Efficient map re-positioning: Data storage is implemented as two-dimensional circular buffer. This allows for non-destructive shifting of the map's position (e.g. to follow the robot) without copying data in memory.
- Based on Eigen: Grid map data is stored as Eigen data types. Users can apply available Eigen algorithms directly to the map data for versatile and efficient data manipulation.
- Convenience functions: Several helper methods allow for convenient and memory safe cell data access. For example, iterator functions for rectangular, circular, polygonal regions and lines are implemented.
- ROS interface: Grid maps can be directly converted to and from ROS message types such as PointCloud2, OccupancyGrid, GridCells, and our custom GridMap message.
- OpenCV interface: Grid maps can be seamlessly converted from and toOpenCV image types to make use of the tools provided byOpenCV.
- Visualizations: The grid_map_rviz_plugin renders grid maps as 3d surface plots (height maps) inRViz. Additionally, the grid_map_visualization package helps to visualize grid maps as point clouds, occupancy grids, grid cells etc.
The grid map package has been tested with ROS Indigo, Jade (under Ubuntu 14.04) and Kinetic (under Ubuntu 16.04). This is research code, expect that it changes often and any fitness for a particular purpose is disclaimed.
The source code is released under a BSD 3-Clause license.
Author: Péter Fankhauser
Maintainer: Péter Fankhauser, pfankhauser@ethz.ch
With contributions by: Martin Wermelinger, Philipp Krüsi, Remo Diethelm, Ralph Kaestner, Elena Stumm, Dominic Jud, Daniel Stonier, Christos Zalidis
Affiliation: Autonomous Systems Lab, ETH Zurich

Publications
If you use this work in an academic context, please cite the following publication(s):
P. Fankhauser and M. Hutter,"A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation",in Robot Operating System (ROS) – The Complete Reference (Volume 1), A. Koubaa (Ed.), Springer, 2016. (PDF)
@incollection{Fankhauser2016GridMapLibrary,
author = {Fankhauser, Péter and Hutter, Marco},
booktitle = {Robot Operating System (ROS) – The Complete Reference (Volume 1)},
title = {{A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation}},
chapter = {5},
editor = {Koubaa, Anis},
publisher = {Springer},
year = {2016},
isbn = {978-3-319-26052-5},
doi = {10.1007/978-3-319-26054-9{\_}5},
url = {http://www.springer.com/de/book/9783319260525}
}
Documentation
An introduction to the grid map library including a tutorial is given in this book chapter.
The C++ API is documented here:
Installation
Installation from Packages
To install all packages from the grid map library as Debian packages use
sudo apt-get install ros-indigo-grid-map
Building from Source
Dependencies
The grid_map_core package depends only on the linear algebra library Eigen.
sudo apt-get install libeigen3-dev
The grid_map_cv package depends additionally on OpenCV.
The other packages depend additionally on the ROS standard installation (roscpp, tf, filters, sensor_msgs, nav_msgs, and cv_bridge).
Building
To build from source, clone the latest version from this repository into your catkin workspace and compile the package using
cd catkin_ws/src
git clone https://github.com/ethz-asl/grid_map.git
cd ../
catkin_make
To maximize performance, make sure to build in Release mode. You can specify the build type by setting
catkin_make -DCMAKE_BUILD_TYPE=Release
Packages Overview
This repository consists of following packages:
- grid_map is the meta-package for the grid map library.
- grid_map_core implements the algorithms of the grid map library. It provides the
GridMapclass and several helper classes such as the iterators. This package is implemented withoutROS dependencies. - grid_map_ros is the main package for ROS dependent projects using the grid map library. It provides the interfaces to convert grid maps from and to severalROS message types.
- grid_map_cv provides conversions of grid maps from and toOpenCV image types.
- grid_map_msgs holds the ROS message and service definitions around the [grid_map_msg/GridMap] message type.
- grid_map_rviz_plugin is an RViz plugin to visualize grid maps as 3d surface plots (height maps).
- grid_map_visualization contains a node written to convert GridMap messages to otherROS message types for example for visualization inRViz.
- grid_map_filters builds on the ROS filters package to process grid maps as a sequence of filters.
- grid_map_demos contains several nodes for demonstration purposes.
Unit Tests
Run the unit tests with
catkin_make run_tests_grid_map_core run_tests_grid_map_ros
or
catkin build grid_map --no-deps --verbose --catkin-make-args run_tests
if you are using catkin tools.
Usage
Demonstrations
The grid_map_demos package contains several demonstration nodes. Use this code to verify your installation of the grid map packages and to get you started with your own usage of the library.
simple_demo demonstrates a simple example for using the grid map library. This ROS node creates a grid map, adds data to it, and publishes it. To see the result in RViz, execute the command
roslaunch grid_map_demos simple_demo.launch
tutorial_demo is an extended demonstration of the library's functionalities. Launch thetutorial_demo with
roslaunch grid_map_demos tutorial_demo.launch
iterators_demo showcases the usage of the grid map iterators. Launch it with
roslaunch grid_map_demos iterators_demo.launch
image_to_gridmap_demo demonstrates how to convert data from animage to a grid map. Start the demonstration with
roslaunch grid_map_demos image_to_gridmap_demo.launch

opencv_demo demonstrates map manipulations with help ofOpenCV functions. Start the demonstration with
roslaunch grid_map_demos opencv_demo.launch

resolution_change_demo shows how the resolution of a grid map can be changed with help of theOpenCV image scaling methods. The see the results, use
roslaunch grid_map_demos resolution_change_demo.launch
Conventions & Definitions


Iterators
The grid map library contains various iterators for convenience.
| Grid map | Submap | Circle | Line | Polygon |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| Ellipse | Spiral | |||
![]() |
![]() |
Using the iterator in a for loop is common. For example, iterate over the entire grid map with theGridMapIterator with
for (grid_map::GridMapIterator iterator(map); !iterator.isPastEnd(); ++iterator) {
cout << "The value at index " << (*iterator).transpose() << " is " << map.at("layer", *iterator) << endl;
}
The other grid map iterators follow the same form. You can find more examples on how to use the different iterators in theiterators_demo node.
Note: For maximum efficiency when using iterators, it is recommended to locally store direct access to the data layers of the grid map withgrid_map::Matrix& data = map["layer"] outside the for loop:
grid_map::Matrix& data = map["layer"];
for (GridMapIterator iterator(map); !iterator.isPastEnd(); ++iterator) {
const Index index(*iterator);
cout << "The value at index " << index.transpose() << " is " << data(index(0), index(1)) << endl;
}
You can find a benchmarking of the performance of the iterators in the iterator_benchmark node of thegrid_map_demos package which can be run with
rosrun grid_map_demos iterator_benchmark
Beware that while iterators are convenient, it is often the cleanest and most efficient to make use of the built-inEigen methods. Here are some examples:
Setting a constant value to all cells of a layer:
map["layer"].setConstant(3.0);
Adding two layers:
map["sum"] = map["layer_1"] + map["layer_2"];
Scaling a layer:
map["layer"] = 2.0 * map["layer"];
Max. values between two layers:
map["max"] = map["layer_1"].cwiseMax(map["layer_2"]);
Compute the root mean squared error:
map.add("error", (map.get("layer_1") - map.get("layer_2")).cwiseAbs());
unsigned int nCells = map.getSize().prod();
double rootMeanSquaredError = sqrt((map["error"].array().pow(2).sum()) / nCells);
Changing the Position of the Map
There are two different methods to change the position of the map:
setPosition(...): Changes the position of the map without changing data stored in the map. This changes the corresponce between the data and the map frame.move(...): Relocates the grid map such that the corresponce between data and the map frame does not change. Data in the overlapping region before and after the position change remains stored. Data that falls outside of the map at its new position is discarded. Cells that cover previously unknown regions are emptied (set to nan). The data storage is implemented as two-dimensional circular buffer to minimize computational effort.
setPosition(...) |
move(...) |
|---|---|
![]() |
![]() |
Packages
grid_map_rviz_plugin
This RViz plugin visualizes a grid map layer as 3d surface plot (height map). A separate layer can be chosen as layer for the color information.

grid_map_visualization
This node subscribes to a topic of type grid_map_msgs/GridMap and publishes messages that can be visualized in RViz. The published topics of the visualizer can be fully configure with a YAML parameter file. Any number of visualizations with different parameters can be added. An example ishere for the configuration file of the tutorial_demo.
| Point cloud | Vectors | Occupancy grid | Grid cells |
|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Parameters
grid_map_topic(string, default: "/grid_map")The name of the grid map topic to be visualized. See below for the description of the visualizers.
Subscribed Topics
/grid_map(grid_map_msgs/GridMap)The grid map to visualize.
Published Topics
The published topics are configured with the YAML parameter file. Possible topics are:
point_cloud(sensor_msgs/PointCloud2)Shows the grid map as a point cloud. Select which layer to transform as points with the
layerparameter.name: elevation
type: point_cloud
params:
layer: elevation
flat: false # optional
flat_point_cloud(sensor_msgs/PointCloud2)Shows the grid map as a "flat" point cloud, i.e. with all points at the same heightz. This is convenient to visualize 2d maps or images (or even video streams) inRViz with help of its
Color Transformer. The parameterheightdetermines the desiredz-position of the flat point cloud.name: flat_grid
type: flat_point_cloud
params:
height: 0.0
Note: In order to omit points in the flat point cloud from empty/invalid cells, specify the layers which should be checked for validity with
setBasicLayers(...).vectors(visualization_msgs/Marker)Visualizes vector data of the grid map as visual markers. Specify the layers which hold thex-, y-, and z-components of the vectors with the
layer_prefixparameter. The parameterposition_layerdefines the layer to be used as start point of the vectors.name: surface_normals
type: vectors
params:
layer_prefix: normal_
position_layer: elevation
scale: 0.06
line_width: 0.005
color: 15600153 # red
occupancy_grid(nav_msgs/OccupancyGrid)Visualizes a layer of the grid map as occupancy grid. Specify the layer to be visualized with the
layerparameter, and the upper and lower bound withdata_minanddata_max.name: traversability_grid
type: occupancy_grid
params:
layer: traversability
data_min: -0.15
data_max: 0.15
grid_cells(nav_msgs/GridCells)Visualizes a layer of the grid map as grid cells. Specify the layer to be visualized with the
layerparameter, and the upper and lower bounds withlower_thresholdandupper_threshold.name: elevation_cells
type: grid_cells
params:
layer: elevation
lower_threshold: -0.08 # optional, default: -inf
upper_threshold: 0.08 # optional, default: inf
region(visualization_msgs/Marker)Shows the boundary of the grid map.
name: map_region
type: map_region
params:
color: 3289650
line_width: 0.003
Note: Color values are in RGB form as concatenated integers (for each channel value 0-255). The values can be generated likethis as an example for the color green (red: 0, green: 255, blue: 0).
Build Status
Devel Job Status
| Indigo | Jade | Kinetic | |
|---|---|---|---|
| grid_map | |||
| doc |
Release Job Status
| Indigo | Jade | Kinetic | |
|---|---|---|---|
| grid_map | |||
| grid_map_core | |||
| grid_map_ros | |||
| grid_map_msgs | |||
| grid_map_rviz_plugin | |||
| grid_map_visualization | |||
| grid_map_filters | |||
| grid_map_loader | |||
| grid_map_demos |
Bugs & Feature Requests
Please report bugs and request features using the Issue Tracker.
ROS_Kinetic_x ROS栅格地图庫 Grid Map Library的更多相关文章
- [python] A*算法基于栅格地图的全局路径规划
# 所有节点的g值并没有初始化为无穷大 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径 # 最后c ...
- 小豆包的学习之旅:占用概率栅格地图和cost-map
接下来将制图和定位问题分别进行介绍.这两个问题可以视为SLAM过程中两个相互联系的子问题,但是也可以视为两个单独的问题.虽然说SLAM问题是鸡和蛋的问题,但是在实际处理过程中总是有先后的.为了简化问题 ...
- 利用Matlab快速绘制栅格地图
代码演示 % 基于栅格地图的机器人路径规划算法 % 第1节:利用Matlab快速绘制栅格地图 clc clear close all %% 构建颜色MAP图 cmap = [1 1 1; ... % ...
- matlab构建栅格地图绘图思路
matlab构建栅格地图绘图思路 近来因研究需要,调研并思考了栅格地图的生成方法,暂时总结以备不时之需. 栅格的建立最需要注意栅格粒度的问题,即根据需要调整栅格的边长,目前有两种思路一种是固定栅格边长 ...
- Map-making Robots: A Review of the Occupancy Grid Map Algorithm
栅格地图算法:http://www.ikaros-project.org/articles/2008/gridmaps/
- uni-app 地图初用 map
一.uni-app 地图初用 map 代码如下: <template> <view> <!-- <page-head :title="title" ...
- ROS 八叉树地图构建 - 安装 octomap 和 octomap_server 建图包!
项目要用到八叉树库 Octomap 来构建地图,这里记录下安装.可视化,并启用带颜色的 Octomap 的过程. 一.Apt 安装 Octomap 库 如果你不需要修改源码,可以直接安装编译好的 oc ...
- ROS 八叉树地图构建 - 使用 octomap_server 建图过程总结!
构建语义地图时,最开始用的是 octomap_server,后面换成了 semantic_slam: octomap_generator,不过还是整理下之前的学习笔记. 一.增量构建八叉树地图步骤 为 ...
- IOS 使用程序外地图(IOS Map and google Map)
1.调用IOS6苹果地图 IOS6中实现这个功能需要使用Map Kit中的MKPlaceMark和MKMapItem两个类,因此我们需要在工程中添加MapKit.framework主要代码如下: - ...
随机推荐
- Java多线程之生产者消费者
生产者和消费者的实例: 商品类:/** * 商品类 * */public class Goods { final int MAX_NUMBER = 30; // 最大数量 final in ...
- Scrapy选择器的用法
1.构造选择器: >>> response = HtmlResponse(url='http://example.com', body=body) >>> Sele ...
- [COGS 2258][HZOI 2015]复仇的序幕曲
Description 你还梦不梦痛不痛,回忆这么重你怎么背得动 ----序言 当年的战火硝烟已经渐渐远去,可仇恨却在阿凯蒂王子的心中越来越深 他的叔父三年前谋权篡位,逼宫杀死了他的父王,用铁血手腕平 ...
- [SCOI2008]着色方案
1079: [SCOI2008]着色方案 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2228 Solved: 1353[Submit][Stat ...
- bzoj 2560: 串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- bzoj 4518: [Sdoi2016]征途
Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...
- Simpson积分(BZOJ2178)
lrj的代码常数太大T了QAQ,改了一下. #include <cstdio> #include <cmath> #include <algorithm> usin ...
- Delphi 日期时间函数
DateUtils.IncYear();DateUtils.IncMonth();DateUtils.IncWeek();DateUtils.IncDay();DateUtils.IncHour(); ...
- this指针是什么?
this指针的用处: 一个对象的this指针并不是对象本身的一部分.不会影响sizeof(对象)的结果.this的作用域在类内部,当在类的非静态成员函数中访问类的非静态成员的时候,编译器会自动将对象本 ...
- 通过接口标准化ABAP OO开发
本文是对接口编程的讨论,希望能对年轻的开发者有所帮助. 要点: 通过接口对类方法进行更高层的抽象 接口使代码清晰易读 接口使你可以创建模拟对象(Mockup Object)以提高代码的可测试性 帮助实 ...












