————————————————————————————————————————————————————————————

Matt︱R语言调用深度学习架构系列引文

R语言︱H2o深度学习的一些R语言实践——H2o包

R用户的福音︱TensorFlow:TensorFlow的R接口


碎片︱R语言与深度学习

sparklyr包:实现Spark与R的接口,会用dplyr就能玩Spark

—————————————————————————————————————

TensorFlow

TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google’s Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.

Using TensorFlow with R

The TensorFlow API is composed of a set of Python modules that enable constructing and executing TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from within R. Here’s a simple example of making up some data in two dimensions and then fitting a line to it:

library(tensorflow)

# Create 100 phony x, y data points, y = x * 0.1 + 0.3
x_data <- runif(100, min=0, max=1)
y_data <- x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W <- tf$Variable(tf$random_uniform(shape(1L), -1.0, 1.0))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- W * x_data + b

# Minimize the mean squared errors.
loss <- tf$reduce_mean((y - y_data) ^ 2)
optimizer <- tf$train$GradientDescentOptimizer(0.5)
train <- optimizer$minimize(loss)

# Launch the graph and initialize the variables.
sess = tf$Session()
sess$run(tf$initialize_all_variables())

# Fit the line (Learns best fit is W: 0.1, b: 0.3)
for (step in 1:201) {
  sess$run(train)
  if (step %% 20 == 0)
    cat(step, "-", sess$run(W), sess$run(b), "\n")
}

The first part of this code builds the data flow graph. TensorFlow does not actually run any computation until the session is created and the runfunction is called.

MNIST Tutorials

To whet your appetite further, we suggest you check out what a classical machine learning problem looks like in TensorFlow. In the land of neural networks the most “classic” classical problem is the MNIST handwritten digit classification. We offer two introductions here, one for machine learning newbies, and one for pros. If you’ve already trained dozens of MNIST models in other software packages, please take the red pill. If you’ve never even heard of MNIST, definitely take the blue pill. If you’re somewhere in between, we suggest skimming blue, then red.

Images licensed CC BY-SA 4.0; original by W. Carter

If you’re already sure you want to learn and install TensorFlow you can skip these and charge ahead. Don’t worry, you’ll still get to see MNIST – we’ll also use MNIST as an example in our technical tutorial where we elaborate on TensorFlow features.

Download and Setup

Installing TensorFlow

You can install the main TensorFlow distribution from here:

https://www.tensorflow.org/get_started/os_setup.html#download-and-setup

NOTE: You should NOT install TensorFlow with Anaconda as there are issues with the way Anaconda builds the python shared library that prevent dynamic linking from R.

If you install TensorFlow within a Virtualenv environment you’ll need to be sure to use that same environment when installing the tensorflow R package (see below for details).

Installing the R Package

If you installed TensorFlow via pip with your system default version of python then you can install the tensorflow R package as follows:

devtools::install_github("rstudio/tensorflow")

If you are using a different version of python for TensorFlow, you should set the TENSORFLOW_PYTHON environment variable to the full path of the python binary before installing, for example:

Sys.setenv(TENSORFLOW_PYTHON="/usr/local/bin/python")
devtools::install_github("rstudio/tensorflow")

If you only need to customize the version of python used (for example specifing python 3 on an Ubuntu system), you can set theTENSORFLOW_PYTHON_VERSION environment variable before installation:

Sys.setenv(TENSORFLOW_PYTHON_VERSION = 3)
devtools::install_github("rstudio/tensorflow")

Verifying Installation

You can verify that your installation is working correctly by running this script:

library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)

RStudio IDE

The tensorflow package provides code completion and inline help for the TensorFlow API when running within the RStudio IDE. In order to take advantage of these features you should also install the current Preview Release of RStudio.

Recommended Next Steps

Once you’ve installed the base TensorFlow system and the tensorflow R package, you will likely want work though the series of tutorials that cover TensorFlow basics:

These articles cover the core concepts of TensorFlow in more depth as well describe the details of using the TensorFlow API from R:

These articles provide more in depth treatments of various topics:

Finally, to learn more about neural networks you might enjoy the TensorFlow playground, which lets you tinker with a neural network in your browser.

R用户的福音︱TensorFlow:TensorFlow的R接口的更多相关文章

  1. R语言︱H2o深度学习的一些R语言实践——H2o包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...

  2. 社交网络分析的 R 基础:(一)初探 R 语言

    写在前面 3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道.最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号.回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件 ...

  3. R语言编程艺术(5)R语言编程进阶

    本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ================================== ...

  4. 编译 TensorFlow 的 C/C++ 接口

    TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口. 安装环境: ...

  5. 在R中使用Keras和TensorFlow构建深度学习模型

    一.以TensorFlow为后端的Keras框架安装 #首先在ubuntu16.04中运行以下代码 sudo apt-get install libcurl4-openssl-dev libssl-d ...

  6. R 语言学习笔记(1)——R 工作空间与输入输出

    什么是工作空间? 工作空间(workspace)就是当前 R 的工作环境,它储存着所有用户定义的对象(objectives)包括了向量.矩阵.函数.数据框.列表等. 处理 R 文件的工作流程 #设置当 ...

  7. R语言学习之主成分分析法的R实践

    主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d)  #对数据进行标 ...

  8. R.layout.main connot be resolved 和R.java消失

    出现例如以下问题: 鼠标放到出代码上面: 分析问题: 1.查看R文件是否被生成.假设没有生成,则勾选build Automatically,然后Clean: 2.假设R文件已生成.则删除去掉代码中: ...

  9. R语言︱情感分析—基于监督算法R语言实现(二)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...

随机推荐

  1. 20165318 预备作业二 学习基础和C语言基础调查

    20165318 学习基础和C语言基础调查 技能学习经验 我们这一代人,或多或少的都上过各种兴趣班,舞蹈钢琴画画书法,我也是如此.可这些技能中,唯一能拿的出手的就是舞蹈了.按照<优秀的教学方法- ...

  2. substr与substring的用法

    substr substr() 方法返回一个字符串中从指定位置开始到指定字符数的字符. 语法 str.substr(start[, length]) 参数 strat 开始提取字符的位置.如果为负值, ...

  3. dos2unix和unix2dos

    dos2unix将windows格式的文件转换为linux格式的文件. unix2dos将linux格式的文件转换为windows格式的文件. dos2unix和unix2dos会转换windows和 ...

  4. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  5. linux指令札记

    1.有关文件压缩解压缩:Linux下自带了一个unzip的程序可以解压缩文件,解压命令是:unzip filename.zip 同样也提供了一个zip程序压缩zip文件,命令是 zip filenam ...

  6. python3加密解密模块 cryptography

    cryptography 的目标是成为"人类易于使用的密码学包cryptography for humans",就像 requests 是"人类易于使用的 HTTP 库H ...

  7. Selenium_Java版本安装及初试

    [环境] ①JDK版本:jdk1.8.0_73 ②Eclipse:jee-mars-4.5.2 ③Selenium:selenium-java-3.5.3 ④GoogleChrome:60 ⑤chro ...

  8. Java实现邮箱验证

    Java实现邮箱验证 JavaMail,顾名思义,提供给开发者处理电子邮件相关的编程接口.它是Sun发布的用来处理email的API.它可以方便地执行一些常用的邮件传输.我们可以基于JavaMail开 ...

  9. 【汇总】Linux常用脚本shell

    [crontab] #每天6:00 执行a.sh00 6 * * * /bin/sh /home/work/rxShell/a.sh #每天3:20 执行a1.sh20 3 * * * /bin/sh ...

  10. Windows 系统下安装 dig 命令

    dig是一个Linux下用来DNS查询信息的小工具,dig全称是Domain Information Groper,与nslookup类似,但比nslookup功能更强大.Windows只有nsloo ...