R用户的福音︱TensorFlow:TensorFlow的R接口
————————————————————————————————————————————————————————————
Matt︱R语言调用深度学习架构系列引文
R用户的福音︱TensorFlow:TensorFlow的R接口
TensorFlow
TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google’s Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
Using TensorFlow with R
The TensorFlow API is composed of a set of Python modules that enable constructing and executing TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from within R. Here’s a simple example of making up some data in two dimensions and then fitting a line to it:
library(tensorflow)
# Create 100 phony x, y data points, y = x * 0.1 + 0.3
x_data <- runif(100, min=0, max=1)
y_data <- x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W <- tf$Variable(tf$random_uniform(shape(1L), -1.0, 1.0))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- W * x_data + b
# Minimize the mean squared errors.
loss <- tf$reduce_mean((y - y_data) ^ 2)
optimizer <- tf$train$GradientDescentOptimizer(0.5)
train <- optimizer$minimize(loss)
# Launch the graph and initialize the variables.
sess = tf$Session()
sess$run(tf$initialize_all_variables())
# Fit the line (Learns best fit is W: 0.1, b: 0.3)
for (step in 1:201) {
sess$run(train)
if (step %% 20 == 0)
cat(step, "-", sess$run(W), sess$run(b), "\n")
}
The first part of this code builds the data flow graph. TensorFlow does not actually run any computation until the session is created and the runfunction is called.
MNIST Tutorials
To whet your appetite further, we suggest you check out what a classical machine learning problem looks like in TensorFlow. In the land of neural networks the most “classic” classical problem is the MNIST handwritten digit classification. We offer two introductions here, one for machine learning newbies, and one for pros. If you’ve already trained dozens of MNIST models in other software packages, please take the red pill. If you’ve never even heard of MNIST, definitely take the blue pill. If you’re somewhere in between, we suggest skimming blue, then red.


Images licensed CC BY-SA 4.0; original by W. Carter
If you’re already sure you want to learn and install TensorFlow you can skip these and charge ahead. Don’t worry, you’ll still get to see MNIST – we’ll also use MNIST as an example in our technical tutorial where we elaborate on TensorFlow features.
Download and Setup
Installing TensorFlow
You can install the main TensorFlow distribution from here:
https://www.tensorflow.org/get_started/os_setup.html#download-and-setup
NOTE: You should NOT install TensorFlow with Anaconda as there are issues with the way Anaconda builds the python shared library that prevent dynamic linking from R.
If you install TensorFlow within a Virtualenv environment you’ll need to be sure to use that same environment when installing the tensorflow R package (see below for details).
Installing the R Package
If you installed TensorFlow via pip with your system default version of python then you can install the tensorflow R package as follows:
devtools::install_github("rstudio/tensorflow")
If you are using a different version of python for TensorFlow, you should set the TENSORFLOW_PYTHON environment variable to the full path of the python binary before installing, for example:
Sys.setenv(TENSORFLOW_PYTHON="/usr/local/bin/python")
devtools::install_github("rstudio/tensorflow")
If you only need to customize the version of python used (for example specifing python 3 on an Ubuntu system), you can set theTENSORFLOW_PYTHON_VERSION environment variable before installation:
Sys.setenv(TENSORFLOW_PYTHON_VERSION = 3)
devtools::install_github("rstudio/tensorflow")
Verifying Installation
You can verify that your installation is working correctly by running this script:
library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)
RStudio IDE
The tensorflow package provides code completion and inline help for the TensorFlow API when running within the RStudio IDE. In order to take advantage of these features you should also install the current Preview Release of RStudio.
Recommended Next Steps
Once you’ve installed the base TensorFlow system and the tensorflow R package, you will likely want work though the series of tutorials that cover TensorFlow basics:
These articles cover the core concepts of TensorFlow in more depth as well describe the details of using the TensorFlow API from R:
These articles provide more in depth treatments of various topics:
- Variables: Creation, Initialization, Saving, and Loading
- TensorFlow Mechanics 101
- TensorBoard: Visualizing Learning
- TensorBoard: Graph Visualization
Finally, to learn more about neural networks you might enjoy the TensorFlow playground, which lets you tinker with a neural network in your browser.
R用户的福音︱TensorFlow:TensorFlow的R接口的更多相关文章
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- 社交网络分析的 R 基础:(一)初探 R 语言
写在前面 3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道.最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号.回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件 ...
- R语言编程艺术(5)R语言编程进阶
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ================================== ...
- 编译 TensorFlow 的 C/C++ 接口
TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口. 安装环境: ...
- 在R中使用Keras和TensorFlow构建深度学习模型
一.以TensorFlow为后端的Keras框架安装 #首先在ubuntu16.04中运行以下代码 sudo apt-get install libcurl4-openssl-dev libssl-d ...
- R 语言学习笔记(1)——R 工作空间与输入输出
什么是工作空间? 工作空间(workspace)就是当前 R 的工作环境,它储存着所有用户定义的对象(objectives)包括了向量.矩阵.函数.数据框.列表等. 处理 R 文件的工作流程 #设置当 ...
- R语言学习之主成分分析法的R实践
主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d) #对数据进行标 ...
- R.layout.main connot be resolved 和R.java消失
出现例如以下问题: 鼠标放到出代码上面: 分析问题: 1.查看R文件是否被生成.假设没有生成,则勾选build Automatically,然后Clean: 2.假设R文件已生成.则删除去掉代码中: ...
- R语言︱情感分析—基于监督算法R语言实现(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...
随机推荐
- .NET 异步多线程,Thread,ThreadPool,Task,Parallel,异常处理,线程取消
今天记录一下异步多线程的进阶历史,以及简单的使用方法 主要还是以Task,Parallel为主,毕竟用的比较多的现在就是这些了,再往前去的,除非是老项目,不然真的应该是挺少了,大概有个概念,就当了解一 ...
- Bug等级判断标准
测试的问题大致可分为以下几个类型:致命问题严重问题一般问题轻微问题 判断标准如下1.致命问题:造成系统崩溃.死机.死循环,导致数据库数据丢失,与数据库连接错误,主要功能丧失,基本模块缺失等问题.如:代 ...
- 面试中的DNS
DNS 当DNS客户机需要在程序中使用名称时,它会查询DNS服务器来解析该名称.客户机发送的每条查询信息包括三条信息:指定的DNS域名,指定的查询类型,DNS域名的指定类别. DNS基于UDP服务,端 ...
- html集锦
注意:此内容为复习所总结,非专业,不全,理解记录理解会有偏差. 一.HTML解释: 指的是超文本标记语言 (Hyper Text Markup Language),不是一种编程语言,而是一种标记语言 ...
- 使用hexo搭建个人博客
安装前提 node.js git 如果缺少以上条件,则前往相应的官网下载安装即可.. 安装hexo $ npm install hexo-cli -g 待安装完成后,执行相关命令查看hexo的信息. ...
- 不依赖jstack的java 线程dump和死锁检查工具
java线程dump可以使用jdk的命令"jstack pid"完成,死锁检查可以用jconsole查看到.这两个工具是java调试的常用方法. 我遇到的问题是:在sles11s ...
- PHP可以通过类名调用非静态方法
今日有兄弟遇上一个问题,就是可以通过class名称直接调用该类中的函数,我测试了一下,确实可以,概念中是只有静态方法才可以这样调用的,现在 被刷新了,于是我在方法中加入一行$this相关的操作,再运行 ...
- rsync源目录写法的一点小细节
原始状态: [root@localhost tmp]# tree . ├── a │ ├── a1 │ └── a2 └── b directories, files [root@localhost ...
- bzoj 2655: calc [容斥原理 伯努利数]
2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...