R用户的福音︱TensorFlow:TensorFlow的R接口
————————————————————————————————————————————————————————————
Matt︱R语言调用深度学习架构系列引文
R用户的福音︱TensorFlow:TensorFlow的R接口
TensorFlow
TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google’s Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
Using TensorFlow with R
The TensorFlow API is composed of a set of Python modules that enable constructing and executing TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from within R. Here’s a simple example of making up some data in two dimensions and then fitting a line to it:
library(tensorflow)
# Create 100 phony x, y data points, y = x * 0.1 + 0.3
x_data <- runif(100, min=0, max=1)
y_data <- x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W <- tf$Variable(tf$random_uniform(shape(1L), -1.0, 1.0))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- W * x_data + b
# Minimize the mean squared errors.
loss <- tf$reduce_mean((y - y_data) ^ 2)
optimizer <- tf$train$GradientDescentOptimizer(0.5)
train <- optimizer$minimize(loss)
# Launch the graph and initialize the variables.
sess = tf$Session()
sess$run(tf$initialize_all_variables())
# Fit the line (Learns best fit is W: 0.1, b: 0.3)
for (step in 1:201) {
sess$run(train)
if (step %% 20 == 0)
cat(step, "-", sess$run(W), sess$run(b), "\n")
}
The first part of this code builds the data flow graph. TensorFlow does not actually run any computation until the session is created and the runfunction is called.
MNIST Tutorials
To whet your appetite further, we suggest you check out what a classical machine learning problem looks like in TensorFlow. In the land of neural networks the most “classic” classical problem is the MNIST handwritten digit classification. We offer two introductions here, one for machine learning newbies, and one for pros. If you’ve already trained dozens of MNIST models in other software packages, please take the red pill. If you’ve never even heard of MNIST, definitely take the blue pill. If you’re somewhere in between, we suggest skimming blue, then red.


Images licensed CC BY-SA 4.0; original by W. Carter
If you’re already sure you want to learn and install TensorFlow you can skip these and charge ahead. Don’t worry, you’ll still get to see MNIST – we’ll also use MNIST as an example in our technical tutorial where we elaborate on TensorFlow features.
Download and Setup
Installing TensorFlow
You can install the main TensorFlow distribution from here:
https://www.tensorflow.org/get_started/os_setup.html#download-and-setup
NOTE: You should NOT install TensorFlow with Anaconda as there are issues with the way Anaconda builds the python shared library that prevent dynamic linking from R.
If you install TensorFlow within a Virtualenv environment you’ll need to be sure to use that same environment when installing the tensorflow R package (see below for details).
Installing the R Package
If you installed TensorFlow via pip with your system default version of python then you can install the tensorflow R package as follows:
devtools::install_github("rstudio/tensorflow")
If you are using a different version of python for TensorFlow, you should set the TENSORFLOW_PYTHON environment variable to the full path of the python binary before installing, for example:
Sys.setenv(TENSORFLOW_PYTHON="/usr/local/bin/python")
devtools::install_github("rstudio/tensorflow")
If you only need to customize the version of python used (for example specifing python 3 on an Ubuntu system), you can set theTENSORFLOW_PYTHON_VERSION environment variable before installation:
Sys.setenv(TENSORFLOW_PYTHON_VERSION = 3)
devtools::install_github("rstudio/tensorflow")
Verifying Installation
You can verify that your installation is working correctly by running this script:
library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)
RStudio IDE
The tensorflow package provides code completion and inline help for the TensorFlow API when running within the RStudio IDE. In order to take advantage of these features you should also install the current Preview Release of RStudio.
Recommended Next Steps
Once you’ve installed the base TensorFlow system and the tensorflow R package, you will likely want work though the series of tutorials that cover TensorFlow basics:
These articles cover the core concepts of TensorFlow in more depth as well describe the details of using the TensorFlow API from R:
These articles provide more in depth treatments of various topics:
- Variables: Creation, Initialization, Saving, and Loading
- TensorFlow Mechanics 101
- TensorBoard: Visualizing Learning
- TensorBoard: Graph Visualization
Finally, to learn more about neural networks you might enjoy the TensorFlow playground, which lets you tinker with a neural network in your browser.
R用户的福音︱TensorFlow:TensorFlow的R接口的更多相关文章
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- 社交网络分析的 R 基础:(一)初探 R 语言
写在前面 3 年的硕士生涯一转眼就过去了,和社交网络也打了很长时间交道.最近突然想给自己挖个坑,想给这 3 年写个总结,画上一个句号.回想当时学习 R 语言时也是非常戏剧性的,开始科研生活时到处发邮件 ...
- R语言编程艺术(5)R语言编程进阶
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ================================== ...
- 编译 TensorFlow 的 C/C++ 接口
TensorFlow 的 Python 接口由于其方便性和实用性而大受欢迎,但实际应用中我们可能还需要其它编程语言的接口,本文将介绍如何编译 TensorFlow 的 C/C++ 接口. 安装环境: ...
- 在R中使用Keras和TensorFlow构建深度学习模型
一.以TensorFlow为后端的Keras框架安装 #首先在ubuntu16.04中运行以下代码 sudo apt-get install libcurl4-openssl-dev libssl-d ...
- R 语言学习笔记(1)——R 工作空间与输入输出
什么是工作空间? 工作空间(workspace)就是当前 R 的工作环境,它储存着所有用户定义的对象(objectives)包括了向量.矩阵.函数.数据框.列表等. 处理 R 文件的工作流程 #设置当 ...
- R语言学习之主成分分析法的R实践
主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d) #对数据进行标 ...
- R.layout.main connot be resolved 和R.java消失
出现例如以下问题: 鼠标放到出代码上面: 分析问题: 1.查看R文件是否被生成.假设没有生成,则勾选build Automatically,然后Clean: 2.假设R文件已生成.则删除去掉代码中: ...
- R语言︱情感分析—基于监督算法R语言实现(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据 ...
随机推荐
- APP测试(转载)
(1) 非功能测试 app测试的一个重要方面是app的非功能需求.移动app在推出市场或进行进一步开发前,测试人员有一定的职责做该类需求的跟踪工作. 早期开发阶段要进行的第一个测试应该是实用性测试.通 ...
- printf,sprintf,fprintf的比较
1 printf,是把格式字符串输出到标准输出(一般是屏幕,可以重定向).2 sprintf,是把格式字符串输出到指定字符串中,所以参数比printf多一个char*.那就是目标字符串地址.3 fpr ...
- 基于 HTML5 Canvas 绘制的电信网络拓扑图
电信网结构(telecommunication network structure)是指电信网各种网路单元按技术要求和经济原则进行组合配置的组合逻辑和配置形式.组合逻辑描述网路功能的体系结构,配置形式 ...
- 14_Python字符串操作方法总结
字符串方法总结 #s = '**i love you\n\t' 测试s.strip()使用的字符串 s = 'i love you' #1.首字符大写,其余字符小写 print(s.capitaliz ...
- 隐藏index.php
以 Apache 为例,需要在入口文件的同级添加 .htaccess 文件(官方默认自带了该文件),内容如下:<IfModule mod_rewrite.c>Options +Follow ...
- java泛型类的继承规则
首先看一看java泛型类的使用: /** * 一个泛型方法:使程序更加安全 * 并且能被更多的使用 * @author 丁** * * @param <T> */ class Pair&l ...
- 携程Apollo(阿波罗)配置中心用户管理和部门管理
Apollo是配置管理系统,会提供权限管理(Authorization),理论上是不负责用户登录认证功能的实现(Authentication).所以Apollo定义了一些SPI用来解耦,Apollo接 ...
- hdfs文件按修改时间下载
应用于:对于不同用户创建的表目录,进行文件的下载,程序中执行hadoop cat命令 下载文件到本地,随后通过ftp传至目标服务器,并将hdfs文件目录的修改时间存入mysql中.每次修改前将mysq ...
- configure: error: Bundled APR requested but not found at ./srclib/. Download and unpack the corresponding apr and apr-util packages to ./srclib/.
Apache在2.4版本以后,编译时: # ./configure \ --prefix=/usr/local/apache2 \ --with-included-apr \ --enable-so ...
- SQL SERVER FOR LINUX初体验
今天得空,就在Ubuntu17.04上安装了SQL SERVER 2017体验下,总体来说还是不错的. 在Ubuntu上安装SQL SERVER 2017还是比较方便的,只需几条命令即可: curl ...