1、给出$n,k$,求一个大于等于$n$且最小的数字$m$使得$m$的二进制表示中存在连续$k$个1 。

思路:如果$n$满足,答案就是$n$。否则,依次枚举连续1的位置判断即可。

#include <iostream>
#include <set>
#include <stdio.h>
#include <queue>
#include <algorithm>
#include <string.h>
using namespace std; class ConsecutiveOnes
{
public:
long long get(long long n,int k) { const int N=50; int a[N+5];
a[0]=0;
for(int i=1;i<=N;++i)
{
a[i]=(n>>(i-1))&1;
a[i]+=a[i-1];
}
for(int i=k;i<=N;++i) if(a[i]-a[i-k]==k) return n;
long long ans=((n>>k)<<k)|((1ll<<k)-1);
long long tmp=ans;
for(int i=k;i<N;++i)
{
if((tmp>>(i-k))&1) tmp^=1ll<<(i-k);
tmp|=1ll<<i;
if(tmp>=n&&tmp<ans) ans=tmp;
}
return ans;
}
};

  

2、给出一个整数$X=\prod_{i=0}^{n-1}p_{i}^{a_{i}}$,其中$p_{i}$表示第i个素数,比如$p_{0}=2,p_{1}=3$。问有多少有序数列使得数列中每个数字大于1且所有数字的乘积等于$X$。当$X=6$时有三个,分别是{2,3},{3,2},{6}。其中$1\leq n \leq 50,1\leq a_{i} \leq 50$。

思路:令$f_{i}$表示将$X$表示成$i$个数乘积的方案数。那么$f_{i}=\prod_{k=0}^{n-1}g(a_{k},i)-\sum_{k=1}^{i-1}C_{i}^{k}f_{k}$。其中$g(i,j)$表示将$i$个苹果放在$j$个篮子里的方案数,$C_{i}^{j}$表示组合数。

那么答案$ans=\sum f_{i}$

#include <iostream>
#include <map>
#include <string>
#include <stdio.h>
#include <vector>
#include <set>
#include <algorithm>
#include <string.h>
#include <queue>
using namespace std; const int N=3005;
const int mod=1000000007; int C[N][N]; int add(int x,int y) {
x+=y;
if(x>=mod) x-=mod;
return x;
} void init()
{
C[0][0]=1;
for(int i=1;i<N;++i) {
C[i][0]=1;
for(int j=1;j<N;++j) {
C[i][j]=add(C[i-1][j],C[i-1][j-1]);
}
}
} int calC(int a,int b) {
if(a<b) return 0;
if(b+b>a) b=a-b;
return C[a][b];
} int cal1(int a,int b) {
return calC(a+b-1,b-1);
} int dp[N]; struct OrderedProduct {
int count(vector<int> a)
{
init();
int s=0;
const int n=(int)a.size();
for(int i=0;i<n;++i) s+=a[i];
int ans=0;
for(int i=1;i<=s;++i) {
dp[i]=1;
for(int j=0;j<n;++j) dp[i]=(long long)dp[i]*cal1(a[j],i)%mod;
for(int j=1;j<i;++j) dp[i]=add(dp[i],mod-(long long)calC(i,j)*dp[j]%mod);
ans=add(ans,dp[i]);
}
return ans;
}
};

  

topcoder srm 711 div1 -3的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  4. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  5. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  6. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  7. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  8. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  9. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

随机推荐

  1. LeetCode8.字符串转整数(atoi)

    题目链接:https://leetcode-cn.com/problems/string-to-integer-atoi/ 实现 atoi,将字符串转为整数. 该函数首先根据需要丢弃任意多的空格字符, ...

  2. 水题 J

    一张CT扫描的灰度图像可以用一个N*N(0 < N <= 100)的矩阵描述,矩阵上的每个点对应一个灰度值(整数),其取值范围是0-255.我们假设给定的图像中有且只有一个肿瘤.在图上监测 ...

  3. STL算法中函数对象和谓词

    函数对象和谓词定义 函数对象: 重载函数调用操作符的类,其对象常称为函数对象(function object),即它们是行为类似函数的对象.一个类对象,表现出一个函数的特征,就是通过“对象名+(参数列 ...

  4. Yii2 Restful api搜索实现

  5. sitecore系统教程之Item快速了解

    项目是Sitecore网站的基本构建块.项目可以表示构成网页的任何类型的信息,例如,一段文本,媒体文件,布局等. 项目始终具有名称,唯一标识项目的ID,并且它基于定义项目包含的字段的模板.此外,项目可 ...

  6. 【Linux学习一】命令查看与帮助

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 一.Linux执行命令流程:shell->bash(解释器 执行 ...

  7. Jmeter下进行ip伪造

    转至https://blog.csdn.net/xingchao416/article/details/53506051 1.首先获取一些闲置的ip地址,且必须为固定地址,不能是自动获取的地址,方法: ...

  8. linux下安装mysql(rpm文件安装)

    数据库包下载: https://www.mysql.com/downloads/ 在GPL开原协议的社区开源版里边下载 我们用mysql community server里边的 其中workbench ...

  9. 转:【专题五】TCP编程

    前言 前面专题的例子都是基于应用层上的HTTP协议的介绍, 现在本专题来介绍下传输层协议——TCP协议,主要介绍下TCP协议的工作过程和基于TCP协议的一个简单的通信程序,下面就开始本专题的正文了. ...

  10. JSVC技术

    如果我们的某个项目时web项目,我们很容易就可以放置在Tomcat中进行启动. 可是如果我们的项目不是web项目,我们又需要在单独启动时,我们又应该怎么办呢?     引出了我们今天的主人公:JSVC ...