Hard!

题目描述:

皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回所有不同的 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例:

输入: 4
输出: [
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."], ["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

解题思路:

经典的N皇后问题,基本所有的算法书中都会包含的问题,经典解法为回溯递归,一层一层的向下扫描,需要用到一个pos数组,其中pos[i]表示第i行皇后的位置,初始化为-1,然后从第0开始递归,每一行都依次遍历各列,判断如果在该位置放置皇后会不会有冲突,以此类推,当到最后一行的皇后放好后,一种解法就生成了,将其存入结果res中,然后再继续完成搜索剩余所有的情况。

C++解法一:

 class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
vector<vector<string> > res;
vector<int> pos(n, -);
solveNQueensDFS(pos, , res);
return res;
}
void solveNQueensDFS(vector<int> &pos, int row, vector<vector<string> > &res) {
int n = pos.size();
if (row == n) {
vector<string> out(n, string(n, '.'));
for (int i = ; i < n; ++i) {
out[i][pos[i]] = 'Q';
}
res.push_back(out);
} else {
for (int col = ; col < n; ++col) {
if (isValid(pos, row ,col)) {
pos[row] = col;
solveNQueensDFS(pos, row + , res);
pos[row] = -;
}
}
}
}
bool isValid(vector<int> &pos, int row, int col) {
for (int i = ; i < row; ++i) {
if (col == pos[i] || abs(row - i) == abs(col - pos[i])) {
return false;
}
}
return true;
}
};

这种棋盘类的题目一般是回溯法, 依次放置每行的皇后。在放置的时候,要保持当前的状态为合法,即当前放置位置的同一行、同一列、两条对角线上都不存在皇后。

C++解法二:

 class Solution {
private:
vector<vector<string> > res;
public:
vector<vector<string> > solveNQueens(int n) {
vector<string>cur(n, string(n,'.'));
helper(cur, );
return res;
}
void helper(vector<string> &cur, int row)
{
if(row == cur.size())
{
res.push_back(cur);
return;
}
for(int col = ; col < cur.size(); col++)
if(isValid(cur, row, col))
{
cur[row][col] = 'Q';
helper(cur, row+);
cur[row][col] = '.';
}
} //判断在cur[row][col]位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<string> &cur, int row, int col)
{
//列
for(int i = ; i < row; i++)
if(cur[i][col] == 'Q')return false;
//右对角线(只需要判断对角线上半部分,因为后面的行还没有开始放置)
for(int i = row-, j=col-; i >= && j >= ; i--,j--)
if(cur[i][j] == 'Q')return false;
//左对角线(只需要判断对角线上半部分,因为后面的行还没有开始放置)
for(int i = row-, j=col+; i >= && j < cur.size(); i--,j++)
if(cur[i][j] == 'Q')return false;
return true;
}
};

上述判断状态是否合法的函数还是略复杂,其实只需要用一个一位数组来存放当前皇后的状态。假设数组为int state[n], state[i]表示第 i 行皇后所在的列。那么在新的一行 k 放置一个皇后后:

  • 判断列是否冲突,只需要看state数组中state[0…k-1] 是否有和state[k]相等;
  • 判断对角线是否冲突:如果两个皇后在同一对角线,那么|row1-row2| = |column1 - column2|,(row1,column1),(row2,column2)分别为冲突的两个皇后的位置

C++解法三:

 class Solution {
private:
vector<vector<string> > res;
public:
vector<vector<string> > solveNQueens(int n) {
vector<int> state(n, -);
helper(state, );
return res;
}
void helper(vector<int> &state, int row)
{//放置第row行的皇后
int n = state.size();
if(row == n)
{
vector<string>tmpres(n, string(n,'.'));
for(int i = ; i < n; i++)
tmpres[i][state[i]] = 'Q';
res.push_back(tmpres);
return;
}
for(int col = ; col < n; col++)
if(isValid(state, row, col))
{
state[row] = col;
helper(state, row+);
state[row] = -;;
}
} //判断在row行col列位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<int> &state, int row, int col)
{
for(int i = ; i < row; i++)//只需要判断row前面的行,因为后面的行还没有放置
if(state[i] == col || abs(row - i) == abs(col - state[i]))
return false;
return true;
}
};

C++解法四(解法三的非递归版):

 class Solution {
private:
vector<vector<string> > res;
public:
vector<vector<string> > solveNQueens(int n) {
vector<int> state(n, -);
for(int row = , col; ;)
{
for(col = state[row] + ; col < n; col++)//从上一次放置的位置后面开始放置
{
if(isValid(state, row, col))
{
state[row] = col;
if(row == n-)//找到了一个解,继续试探下一列
{
vector<string>tmpres(n, string(n,'.'));
for(int i = ; i < n; i++)
tmpres[i][state[i]] = 'Q';
res.push_back(tmpres);
}
else {row++; break;}//当前状态合法,去放置下一行的皇后
}
}
if(col == n)//当前行的所有位置都尝试过,回溯到上一行
{
if(row == )break;//所有状态尝试完毕,退出
state[row] = -;//回溯前清除当前行的状态
row--;
}
}
return res;
} //判断在row行col列位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<int> &state, int row, int col)
{
for(int i = ; i < row; i++)//只需要判断row前面的行,因为后面的行还没有放置
if(state[i] == col || abs(row - i) == abs(col - state[i]))
return false;
return true;
}
};

下面还有一个算法,这个算法主要参考:https://blog.csdn.net/hackbuteer1/article/details/6657109。看helper函数,参数row、ld、rd分别表示在列和两个对角线方向的限制条件下,当前行的哪些地方不能放置皇后。如下图

前三行放置了皇后,他们对第3行(行从0开始)的影响如下:

(1)列限制条件下,第3行的0、2、4列(紫色线和第3行的交点)不能放皇后,因此row = 101010

(2)左对角线限制条件下,第3行的0、3列(蓝色线和第3行的交点)不能放皇后,因此ld = 100100

(3)右对角线限制条件下,第3行的3、4、5列(绿色线和第3行的交点)不能放皇后,因此rd = 000111

~(row | ld | rd) = 010000,即第三行只有第1列能放置皇后。

在3行1列这个位置放上皇后,row,ld,rd对下一行的影响为:

row的第一位置1,变为111010

ld的第一位置1,并且向左移1位(因为左对角线对行的影响是依次向左倾斜的),变为101000

rd的第一位置1,并且向右移1位(因为右对角线对行的影响是依次向右倾斜的),变为001011

第4行状态如下图

C++解法五(这应该是最高效的算法了):

 class Solution {
private:
vector<vector<string> > res;
int upperlim;
public:
vector<vector<string> > solveNQueens(int n) {
upperlim = ( << n) - ;//低n位全部置1
vector<string> cur(n, string(n, '.'));
helper(,,,cur,);
return res;
} void helper(const int row, const int ld, const int rd, vector<string>&cur, const int index)
{
int pos, p;
if ( row != upperlim )
{
pos = upperlim & (~(row | ld | rd ));//pos中二进制为1的位,表示可以在当前行的对应列放皇后
//和upperlim与运算,主要是ld在上一层是通过左移位得到的,它的高位可能有无效的1存在,这样会清除ld高位无效的1
while ( pos )
{
p = pos & (~pos + );//获取pos最右边的1,例如pos = 010110,则p = 000010
pos = pos - p;//pos最右边的1清0
setQueen(cur, index, p, 'Q');//在当前行,p中1对应的列放置皇后
helper(row | p, (ld | p) << , (rd | p) >> , cur, index+);//设置下一行
setQueen(cur, index, p, '.');
}
}
else//找到一个解
res.push_back(cur);
} //第row行,第loc1(p)列的位置放置一个queen或者清空queen,loc1(p)表示p中二进制1的位置
void setQueen(vector<string>&cur, const int row, int p, char val)
{
int col = ;
while(!(p & ))
{
p >>= ;
col++;
}
cur[row][col] = val;
}
};

LeetCode(51):N皇后的更多相关文章

  1. Java实现 LeetCode 51 N皇后

    51. N皇后 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题的解决 ...

  2. leetcode 51. N皇后 及 52.N皇后 II

    51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...

  3. [leetcode]51. N-QueensN皇后

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  4. LeetCode 51. N-QueensN皇后 (C++)(八皇后问题)

    题目: The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two que ...

  5. leetcode 51 N皇后问题

    代码,由全排列转化而来,加上剪枝,整洁的代码: 共有4个变量,res(最终的结果),level,当前合理的解,n皇后的个数,visit,当前列是否放过皇后,由于本来就是在新的行方皇后,又通过visit ...

  6. Leetcode之回溯法专题-51. N皇后(N-Queens)

    Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给 ...

  7. [LeetCode] 51. N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  8. [LeetCode] N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  9. LeetCode: 51. N-Queens(Medium)

    1. 原题链接 https://leetcode.com/problems/n-queens/description/ 2. 题目要求 游戏规则:当两个皇后位于同一条线上时(同一列.同一行.同一45度 ...

  10. Java实现 LeetCode 52 N皇后 II

    52. N皇后 II n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方案 ...

随机推荐

  1. (大数 万进制) N! hdu1042

    N! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Subm ...

  2. Quadratic.java

    /****************************************************************************** * Compilation: javac ...

  3. CISCO知识扫盲

    cisco知识扫盲 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.vlan简介 1.什么是VLAN 简称虚拟局域网.至于英语怎么写自行百度吧. VLAN的优势: 1>.广 ...

  4. 文件上传---form表单,ajax,jquery,以及iframe无刷新上传 (processData,contentType讲解)

    服务端程序: import tornado.web import os IMG_LIST=[] class IndexHandler(tornado.web.RequestHandler): def ...

  5. 在tomcat集群环境下redis实现分布式锁

    上篇介绍了redis在集群环境下如何解决session共享的问题.今天来讲一下如何解决分布式锁的问题 什么是分布式锁? 分布式锁就是在多个服务器中,都来争夺某一资源.这时候我们肯定需要一把锁是不是 , ...

  6. main函数和线程的关系

    https://github.com/mynawang/Java-Multi-Thread-Learning/blob/master/src/main/java/com/sedion/mynawang ...

  7. Golang基础

    Golang官方 https://golang.org/ 使用命令,在本地启动一个go官网 go doc -http=: 访问127.: golang标准库api文档 https://studygol ...

  8. 获取本机IP地址的小脚本

    获取本机私网地址(1个) #!/bin/bash # Author : standby # Date : -- # Description : Get private ip address of lo ...

  9. -boot移植(十一)---代码修改---支持nandflash

    一.移植前的修改 1.1 include/configs/jz2440修改 原来的定义: 可以看出,要先定义CONFIG_CMD_NAND才能使能NANDFlash. 这个在我们文件中的82行有定义, ...

  10. static, const

    static 静态的,类的静态成员函数,静态成员变量是和类相关的,但不和具体对象相关.即使没有具体对象,也能调用类的静态成员函数和成员变量.一般类的静态函数就是一个全局函数,只是作用域在包含它的文件中 ...