一、Model representation(模型表示)

1.1 训练集

由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y)是一个训练样例, (x(i),y(i))是第 i个训练样例.

1.2 假设函数

使用某种学习算法对训练集的数据进行训练, 我们可以得到假设函数(Hypothesis Function), 如下图所示. 在房价的例子中,假设函数就是一个房价关于房子面积的函数。有了这个假设函数之后, 给定一个房子的面积我们就可以预测它的价格了.

  Hypothesis这个词或许在这里不是很恰当。但这是机器学习中使用的标准术语.

以上这个模型就叫做单变量的线性回归(Linear Regression with One Variable). (Linear regression with one variable = Univariate linear regression,univariate是one variable的装逼写法.)

二、Cost Function(代价函数)

2.1 什么是代价函数

只要我们知道了假设函数, 我们就可以进行预测了. 关键是, 假设函数中有两个未知的量θ0,θ1. 当选择不同的θ0和θ1时, 我们模型的效果肯定是不一样的.

如下图所示, 列举了三种不同的θ0和θ1下的假设函数.

(其中的1/2只是为了后面计算的方便)我们记:

这样就得到了我们的代价函数(cost function), 也就是我们的优化目标, 我们想要代价函数最小:

代价函数也被称为平方误差函数(Squared error function)

2.2 代价函数与假设函数

2.2 代价函数与假设函数II

类似地:

我们不断尝试直到找到一个最佳的hθ(x)hθ(x)。是否有特定的算法能帮助我们找到最佳的hθ(x)hθ(x)呢?

下面我们就要介绍这个算法-梯度下降算法.

三. 梯度下降算法

3.1 梯度下降

可以把梯度下降的过程想象成下山坡, 如果想要尽可能快的下坡, 应该每次都往坡度最大的方向下山.

梯度下降算法得到的结果会受到初始状态的影响, 即当从不同的点开始时, 可能到达不同的局部极小值, 如下图:

3.2 梯度和学习率

我们先来看看梯度下降算法的梯度是如何帮助我们找到最优解的. 为了研究问题的方便我们还是同样地令θ0θ0等于0,假设一开始选取的θ1θ1在最低点的右侧,此时的梯度(斜率)是一个正数。根据上面的算法更新θ1θ1的时候,它的值会减小, 即靠近最低点。

类似地假设一开始选取的θ1θ1在最低点的左侧,此时的梯度是一个负数,根据上面的算法更新θ1θ1的时候,它的值会增大,也会靠近最低点.

如果一开始选取的θ1θ1恰好在最适位置,那么更新θ1θ1时,它的值不会发生变化。

学习率α会影响梯度下降的幅度。如果α太小, θ的值每次会变化的很小,那么梯度下降就会非常慢;相反地,如果α过大,θ的值每次会变化会很大,有可能直接越过最低点,可能导致永远没法到达最低点。

由于随着越来越接近最低点, 相应的梯度(绝对值)也会逐渐减小,所以每次下降程度就会越来越小, 我们并不需要减小αα的值来减小下降程度。

3.3 计算梯度

根据定义, 梯度也就是代价函数对每个θ的偏导:

由此得到了完整的梯度下降算法:

还记得这个图吗, 前面说了梯度下降算法得到的结果会受初始状态的影响, 即初始状态不同, 结果可能是不同的局部最低点.

事实上,用于线性回归的代价函数总是一个凸函数(Convex Function)。这样的函数没有局部最优解,只有一个全局最优解。所以我们在使用梯度下降的时候,总会得到一个全局最优解。

下面我们来看一下梯度下降的运行过程:

迭代多次后,我们得到了最优解。现在我们可以用最优解对应的假设函数来对房价进行预测了。例如一个1,250平方英尺的房子大概能卖到250k$,如下图所示:

Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  2. 【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

  3. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  4. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  5. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  6. 机器学习笔记1——Linear Regression with One Variable

    Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...

  7. Machine Learning 学习笔记1 - 基本概念以及各分类

    What is machine learning? 并没有广泛认可的定义来准确定义机器学习.以下定义均为译文,若以后有时间,将补充原英文...... 定义1.来自Arthur Samuel(上世纪50 ...

  8. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

  9. Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记

    这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...

随机推荐

  1. Java——集合

    Java的集合类是一种非常有用的工具类,用于存储多个对象.它是一个容器,可以把多个对象放到里面. Java集合分三种情况: Set:无序.不可重复 List:有序.可重复 Map:具有映射关系 Col ...

  2. c/s 给 服务器上传文件(c/s和b/s互传文件)

    //c/s 代码 private void button1_Click(object sender, EventArgs e) { OpenFileDialog openFileDialog = ne ...

  3. jdk 环境

    一.下载 jdk 下载版本为:Linux x64 最新版本 curl -L -O http://download.oracle.com/otn-pub/java/jdk/8u45-b14/jdk-8u ...

  4. Java SE 之 数据库操作工具类(DBUtil)设计

    JDBC创建数据库基本连接 //1.加载驱动程序 Class.forName(driveName); //2.获得数据库连接 Connection connection = DriverManager ...

  5. CentOS6.8安装配置sonarqube6.4

    下载最新版本的sonar(现在改名叫sonarqube) https://www.sonarqube.org/downloads/ 我下载的版本是Sonarqube6.4        1 使用前需要 ...

  6. MHA-Failover(GTID,Auto_Position=0)

    最近一位同学遇到的案例:凌晨数据库意外宕机,要求在一主两从的基础上,搭建MHA做故障切换.在部署测试中遇到一些问题找到我,交流的过程挖出一些之前忽略的坑,感谢这位同学无私分享!• GTID环境,KIL ...

  7. SpringAOP深入学习

    ----------------------Spring AOP介绍------------------ 1.编程范式概念 面向过程编程:C 面向对象编程:c++,Java 函数式编程 事件驱动编程: ...

  8. 解决kali linux 开启ssh服务后连接不上的问题

    今天在手机端装了NetHunter 想连接PC的kali ,可是怎么都连不上 综合网友的经验: 1.修改sshd_config文件,命令为:vi /etc/ssh/sshd_config 将#Pass ...

  9. char *与const char **函数参数传参问题

    传参方法 ## 函数 extern void f2 ( const char ** ccc ); const char ch = 'X'; char * ch_ptr; const char ** c ...

  10. Shell脚本中执行sql语句操作mysql的5种方法【转】

    对于自动化运维,诸如备份恢复之类的,DBA经常需要将SQL语句封装到shell脚本.本文描述了在Linux环境下mysql数据库中,shell脚本下调用sql语句的几种方法,供大家参考.对于脚本输出的 ...