Pandas分组统计函数:groupby、pivot_table及crosstab
利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby、pivot_table及crosstab,以下分别进行介绍。
0、样例数据
df = DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)})
df
#[Out]# data1 data2 key1 key2
#[Out]# 0 0.439801 1.582861 a one
#[Out]# 1 -1.388267 -0.603653 a two
#[Out]# 2 -0.514400 -0.826736 b one
#[Out]# 3 -1.487224 -0.192404 b two
#[Out]# 4 2.169966 0.074715 a one
1、分组groupby
Pandas中最为常用和有效的分组函数。
1)按列分组
注意以下使用groupby()函数生成的group1是一个中间分组变量,为GroupBy类型。
group1 = df.groupby('key1')
group1
#[Out]# <pandas.core.groupby.DataFrameGroupBy object at 0x0000000009CA5780>
既可依据单个列名’key1’进行为分组,也可依据多个列名['key1','key2']进行分组。
group2 = df.groupby(['key1','key2'])
group2
#[Out]# <pandas.core.groupby.DataFrameGroupBy object at 0x0000000009CB4128>
使用推导式[x for x in group1]可显示分组内容。
[x for x in group1]
#[Out]# [('a', data1 data2 key1 key2
#[Out]# 0 0.439801 1.582861 a one
#[Out]# 1 -1.388267 -0.603653 a two
#[Out]# 4 2.169966 0.074715 a one),
#[Out]# ('b', data1 data2 key1 key2
#[Out]# 2 -0.514400 -0.826736 b one
#[Out]# 3 -1.487224 -0.192404 b two)]
2)按分组统计
在分组group1、group2上应用size()、sum()、count()等统计函数,能分别统计分组数量、不同列的分组和、不同列的分组数量。
group1.size()
#[Out]# key1
#[Out]# a 3
#[Out]# b 2
#[Out]# dtype: int64
group1.sum()
#[Out]# data1 data2
#[Out]# key1
#[Out]# a 1.221499 1.053922
#[Out]# b -2.001624 -1.019140
group2.size()
#[Out]# key1 key2
#[Out]# a one 2
#[Out]# two 1
#[Out]# b one 1
#[Out]# two 1
#[Out]# dtype: int64
group2.count()
#[Out]# data1 data2
#[Out]# key1 key2
#[Out]# a one 2 2
#[Out]# two 1 1
#[Out]# b one 1 1
#[Out]# two 1 1
3)应用agg()
对于分组的某一列或者多个列,应用agg(func)可以对分组后的数据应用func函数。例如:用group1['data1'].agg('mean')对分组后的’data1’列求均值。当然也可以推广到同时作用于多个列和使用多个函数上。
group1['data1'].agg('mean')
#[Out]# key1
#[Out]# a 0.407166
#[Out]# b -1.000812
#[Out]# Name: data1, dtype: float64
group1['data1'].agg(['mean','sum'])
#[Out]# mean sum
#[Out]# key1
#[Out]# a 0.407166 1.221499
#[Out]# b -1.000812 -2.001624
group1['data1','data2'].agg(['mean','sum'])
#[Out]# data1 data2
#[Out]# mean sum mean sum
#[Out]# key1
#[Out]# a 0.407166 1.221499 0.351307 1.053922
#[Out]# b -1.000812 -2.001624 -0.509570 -1.019140
4)应用apply()
apply()不同于agg()的地方在于:前者应用于dataframe的各个列,后者仅作用于指定的列。
df.groupby('key1').apply(mean)
#[Out]# data1 data2
#[Out]# key1
#[Out]# a 0.407166 0.351307
#[Out]# b -1.000812 -0.509570
df.groupby(['key1','key2']).apply(mean)
#[Out]# data1 data2
#[Out]# key1 key2
#[Out]# a one 1.304883 0.828788
#[Out]# two -1.388267 -0.603653
#[Out]# b one -0.514400 -0.826736
#[Out]# two -1.487224 -0.192404
2、透视表pivot_table
可以产生类似于excel数据透视表的结果,相当的直观。
1)分组统计
其中参数index指定“行”键,columns指定“列”键。
df
#[Out]# data1 data2 key1 key2
#[Out]# 0 0.439801 1.582861 a one
#[Out]# 1 -1.388267 -0.603653 a two
#[Out]# 2 -0.514400 -0.826736 b one
#[Out]# 3 -1.487224 -0.192404 b two
#[Out]# 4 2.169966 0.074715 a one
pd.pivot_table(df, index='key1', columns='key2')
#[Out]# data1 data2
#[Out]# key2 one two one two
#[Out]# key1
#[Out]# a 1.304883 -1.388267 0.828788 -0.603653
#[Out]# b -0.514400 -1.487224 -0.826736 -0.192404
df.pivot_table(['data1'], index='key1',columns='key2')
#[Out]# data1
#[Out]# key2 one two
#[Out]# key1
#[Out]# a 1.304883 -1.388267
#[Out]# b -0.514400 -1.487224
2)分项汇总
如果将参数margins设置为True,则可以得到分项总计数据。
df.pivot_table(index='key1',columns='key2', margins=True)
#[Out]# data1 data2
#[Out]# key2 one two All one two All
#[Out]# key1
#[Out]# a 1.304883 -1.388267 0.407166 0.828788 -0.603653 0.351307
#[Out]# b -0.514400 -1.487224 -1.000812 -0.826736 -0.192404 -0.509570
#[Out]# All 0.698455 -1.437746 -0.156025 0.276947 -0.398029 0.006956
3、交叉表crosstab
可以按照指定的行和列统计分组频数,用起来非常方便;当然同样的功能也可采用groupby实现。
pd.crosstab(df.key1,df.key2, margins=True)
#[Out]# key2 one two All
#[Out]# key1
#[Out]# a 2 1 3
#[Out]# b 1 1 2
#[Out]# All 3 2 5
很幸运能够有这么多好用的方法,大大简化了数据分组分析的过程。
Pandas分组统计函数:groupby、pivot_table及crosstab的更多相关文章
- Pandas分组(GroupBy)
任何分组(groupby)操作都涉及原始对象的以下操作之一.它们是 - 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数.在应用函数中,可以执行以下 ...
- pandas分组统计:groupby,melt,pivot_table,crosstab的用法
groupby: 分组 melt: 宽表转长表 pivot_table: 长表转宽表,数据透视表 crosstab: 交叉表 / 列联表,主要用于分组频数统计 import numpy as np i ...
- Pandas分组运算(groupby)修炼
Pandas分组运算(groupby)修炼 Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚. 今天,我们一起来领略下groupby() ...
- pandas聚合和分组运算——GroupBy技术(1)
数据聚合与分组运算——GroupBy技术(1),有需要的朋友可以参考下. pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个 ...
- Python Pandas分组聚合
Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数. apply(),applymap()和map() apply()和applymap()是DataFrame ...
- 数据分组分析—-groupby
数据分组分析—-groupby 代码功能: 对于综合表格data,基于title进行分组处理,并统计每一组的size,得到的是一个series序列,此序列可以放入索引中使用,index() impor ...
- Pandas透视表(pivot_table)详解
介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容 ...
- Pandas分组
GroupBy技术 分组运算的过程可以用下面的流程图表示出来 import pandas as pd from pandas import Series import numpy as np df = ...
- pandas分组和聚合
Pandas分组与聚合 分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:s ...
随机推荐
- SQL SERVER 字符拆分列为多行
注:先学习sql server里的递归CTE. 假设有兴趣表Hobbys Name Hobby 小张 篮球,足球,羽毛球 Name Hobby 小张 篮球 小张 足球 小张 羽毛球 采用[递归cte] ...
- 剑指offer-调整数组内奇偶数顺序
题目描述 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变. 解题思路 时间换 ...
- CentOS虚拟机和物理机共享文件夹实现
安装open-vm-tools: yum -y install open-vm-tools yum -y install open-vm-tools yum -y install open-vm ...
- ECharts 报表事件联动系列二:柱状图,饼状图添加事件
代码如下: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" c ...
- [CodeForces - 447D] D - DZY Loves Modification
D - DZY Loves Modification As we know, DZY loves playing games. One day DZY decided to play with a n ...
- CAD插入块后坐标不匹配
有两张图,将一张图复制(CTRL+V),再另一张图中粘贴到原坐标(pasteorig),两张图可以很好匹配,但将一张图以外部参照的方式插入另一张图却发现图形无法匹配.因为没有看到图纸,所以我也没法准确 ...
- 【转】js 对象按照键值(不分区大小写)排序,生成签名方法
客户需求小程序端用js生成签名,我们按照要求一步一步解决,并且将请求方法封装到一个utils.js里: 第一步:对关联数组按照键名做正序排序. 第二步:拼接字符串 第三步:将拼接的字符串加上私钥 第四 ...
- git通过diff文件,合并未上传代码库代码
今天有段代码需要从别人的机器上同步到本地,但是这段代码还没上库,所以要么将这部分代码打包传过来,或者,用下面的办法. 由于代码修改涉及多个文件,打包搞过来确实比较麻烦,在网上找了下,发现可以用git ...
- android studio 安装步骤
1◆ jdk环境安装 2◆ android文件下载 3◆ 安装步骤 waiting --- 4◆ 配置 正在安装加速器····· google setProxy https:/ ...
- mac nginx+php-fpm配置(安装过后nginx后访问php文件下载,访问php文件请求200显示空白页面)
访问php文件下载是因为没配置php-fpm 两个问题主要都是nginx.conf配置的问题: /usr/local/etc/nginx/nginx.conf server { listen 8 ...