首先我们分析一下下面的代码:

import tensorflow as tf
import numpy as np a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
#c=tf.matmul(a,b)
c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print(c.eval())

问题是上面的代码编译正确吗?编译一下就知道,错误信息如下:

ValueError: Dimensions must be equal, but are 2 and 3 for 'Mul' (op: 'Mul') with input shapes: [2,3], [3,2].

显然,tf.multiply()表示点积,因此维度要一样。而tf.matmul()表示普通的矩阵乘法。

而且tf.multiply(a,b)和tf.matmul(a,b)都要求a和b的类型必须一致。但是之间存在着细微的区别。

在tf中所有返回的tensor,不管传进去是什么类型,传出来的都是numpy ndarray对象。

看看官网API介绍:

tf.matmul(
a,
b,
transpose_a=False,
transpose_b=False,
adjoint_a=False,
adjoint_b=False,
a_is_sparse=False,
b_is_sparse=False,
name=None
)
tf.multiply(
x,
y,
name=None
)

但是tf.matmul(a,b)函数不仅要求a和b的类型必须完全一致,同时返回的tensor类型同a和b一致;而tf.multiply(a,b)函数仅要求a和b的类型显式一致,同时返回的tensor类型与a一致,即在不声明类型的情况下,编译不报错。

例如:

#类型一致,可以运行
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]],dtype=np.float32)
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
#c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (type(c.eval()),type(a.eval()),type(b))
#类型不一致,不可以运行
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
#c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (type(c.eval()),type(a.eval()),type(b))
#类型不一致,可以运行,结果的类型和a一致
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]])
b=np.float32(np.random.randn(2,3))
#c=tf.matmul(a,b)
c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (c.eval())
print (type(c.eval()),type(a.eval()),type(b))
#类型不一致,不可以运行
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]], dtype=np.float32)
b=tf.constant([[1, 2, 3],[4, 5, 6]], dtype=np.int32)
#c=tf.matmul(a,b)
c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (c.eval())
print (type(c.eval()),type(a.eval()),type(b))

tf.matmul()和tf.multipy()的区别的更多相关文章

  1. tf.matmul() 和tf.multiply() 的区别

    1.tf.multiply()两个矩阵中对应元素各自相乘 格式: tf.multiply(x, y, name=None) 参数: x: 一个类型为:half, float32, float64, u ...

  2. deep_learning_Function_tf.add()、tf.subtract()、tf.multiply()、tf.div()

    tf.add().tf.subtract().tf.multiply().tf.div()函数介绍和示例 1. tf.add() 释义:加法操作 示例: x = tf.constant(2, dtyp ...

  3. tf.multiply()和tf.matmul()区别

    (1)tf.multiply是点乘,即Returns x * y element-wise. (2)tf.matmul是矩阵乘法,即Multiplies matrix a by matrix b, p ...

  4. 图文:TF卡和SD卡的区别及什么是TF卡?什么是SD卡

    小型存储设备凭借低廉的价格.多样化的品种.实用等特性大量充斥在大家身边,比如智能手机手机上.数码照相机上.游戏机上(一般是掌机)等都小型电子设备都频繁的使用到这种统称为SD的产品,比如TF卡和SD卡( ...

  5. tf.variable和tf.get_Variable以及tf.name_scope和tf.variable_scope的区别

    在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变 ...

  6. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  7. 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)

    1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...

  8. tf.Session()和tf.InteractiveSession()的区别

    官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs i ...

  9. tf.matmul函数和tf.multiply函数

    tf.matmul(a,b,transpose_a=False,transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=Fal ...

随机推荐

  1. Java之修改文件内容:字符串逐行替换

    依赖包: <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</a ...

  2. Java原子类实现原理分析

    在谈谈java中的volatile一文中,我们提到过并发包中的原子类可以解决类似num++这样的复合类操作的原子性问题,相比锁机制,使用原子类更精巧轻量,性能开销更小,本章就一起来分析下原子类的实现机 ...

  3. MSSQL 转 ACCESS 在表格结构上应注意的

    今天在把一个MSSQL数据库转为ACCESS发现了一些问题: 在MSSQL表格中的一个(标识)递增字段转到ACCESS后,变成了 “数字”类型,而不是“自动编号”. 而当在Access中,一个字段类型 ...

  4. MySQL索引的使用方式和缺点

    一,create CREATE INDEX可对表增加普通索引或UNIQUE索引. CREATE INDEX index_name ON table_name (column_list) CREATE ...

  5. php中的session过期思考一二

    看了php开发组成员鸟哥的一篇关于php设置session过期(http://www.laruence.com/2012/01/10/2469.html)的文章 他也说了一般人的回答的几个答案, 回答 ...

  6. CentOS 7 系统的初化始配置

    安装好CentOS7系统后我们要进行初始设置来让我们的服务器方便管理与使用,但是发现在7以前的版本都能输入的命令不能输入了,去官网查查才发发生了很大的变化,关于有哪些变化的可以点击这里查看,初始配置的 ...

  7. 第1课:SQL注入原理深度解析

    对于Web应用来说,注射式攻击由来已久,攻击方式也五花八门,常见的攻击方式有SQL注射.命令注射以及新近才出现的XPath注射等等.本文将以SQL注射为例,在源码级对其攻击原理进行深入的讲解. 一.注 ...

  8. go struct结构体

    struct结构体 用来自定义复杂数据结构 struct里面可以包含多个字段(属性),字段可以是任意类型 struct类型可以定义方法,注意和函数的区分 struct类型是值类型 struct类型可以 ...

  9. Golang面向对象编程-struct(结构体)

    Golang面向对象编程-struct(结构体) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是面向对象编程 面向对象编程(Object Oriented Program ...

  10. Linux怎么安装vim编译器

    我的Linux系统是Ubantu14.04,默认的是vi编译器,现在安装vim编译器 打开终端输入:sudo apt-get install vim-gtk 一般来说就可以了,但是我的提示出现了报错: ...