10.我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。
请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
是不是发现看不懂,哈哈;编程题就是这样,一定要归纳,手写过程;
n = 1,则 1;
n = 2.则1,1横1,1竖;是不是有点眼熟;
n= 3,则1,1,1横,1,1横1竖,1竖1,1,横;。。。还要再说么?
注意不能省2,因为0为0;
public class Solution {
public int RectCover(int target) {
if(target == 0 || target == 1 || target == 2) {
return target;
}
return RectCover(target-1)+RectCover(target-2);
}
}
10.我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?的更多相关文章
- 剑指offer10:2*1的小矩形横着或者竖着去覆盖2*n的大矩形,总共有多少种方法?
1. 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 2.思路和方法 思路:(下面说到的x*y的矩形,x是宽 ...
- 动态规划之----我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
利用动态规划,一共有n列,若从左向右放小矩形,有两种放置方式: 第一种:横着放,即占用两列.此时第二行的前两个空格只能横着放,所有,总的放置次数变为1+num(2*(n-2)),其中2*(n-2)代表 ...
- 矩形覆盖-我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
class Solution { public: int rectCover(int number) { ; ; ; ||number==) ; ) ; ;i<number+;i++){ res ...
- 迭代器-迭代对象-dir(a)可以查看该数据类型有多少种方法。range(10)在py3里就是一个迭代器,for循环实际就是迭代器的应用
迭代器 我们已经知道,可以直接作用于for循环的数据烈性有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str,bytes等: 一类是generator,数据结构,包括生成 ...
- 有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台阶走完?
有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台阶走完? 相关问题: (1)有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台 ...
- android 让一个控件按钮居于底部的几种方法
android 让一个控件按钮居于底部的几种方法1.采用linearlayout布局:android:layout_height="0dp" <!-- 这里不能设置fill_ ...
- F - Goldbach`s Conjecture 对一个大于2的偶数n,找有多少种方法使两个素数的和为n;保证素数a<=b; a+b==n; a,b都为素数。
/** 题目:F - Goldbach`s Conjecture 链接:https://vjudge.net/contest/154246#problem/F 题意:对一个大于2的偶数n,找有多少种方 ...
- [转]android 让一个控件按钮居于底部的几种方法
本文转自:http://www.cnblogs.com/zdz8207/archive/2012/12/13/2816906.html android 让一个控件按钮居于底部的几种方法 1.采用lin ...
- 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
// test14.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
随机推荐
- Linux -- 基于zookeeper的java api(二)
Linux -- 基于zookeeper的java api(二) 写一个关于基于集群的zookeeper的自定义实现HA 基于客户端和监控器:使用监控的方法查看每个注册过的节点的状态来做出操作. Wa ...
- 【转】别跟我谈EF抵抗并发,敢问你到底会不会用EntityFramework
前言 一直以来写的博文都是比较温婉型的博文,今天这篇博文算是一篇批判性博文,有问题欢迎探讨,如标题,你到底会不会用EntityFramework啊. 你到底会不会用EntityFramework啊 面 ...
- jackSon注解– @JsonInclude 注解不返回null值字段
@Data @JsonInclude(JsonInclude.Include.NON_NULL) public class OrderDTO { private String orderId; @Js ...
- CAFFE 调试
在Make.config 文件里将DEBUG=1的注释去掉,再make.可以用IDE如eclipse来import makefile工程.必要时按照IDE的提示将源文件cpp和对应的bin文件对应.
- Centos 7.4 源码 Nginx 安装
一.安装编译工具及库文件 yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-devel 二.首先要安装 PCRE ...
- Weka中数据挖掘与机器学习系列之数据格式ARFF和CSV文件格式之间的转换(五)
不多说,直接上干货! Weka介绍: Weka是一个用Java编写的数据挖掘工具,能够运行在各种平台上.它不仅提供了可以直接用于数据挖掘的软件,还提供了src代码,使用者可以修改源代码,进行二次开发. ...
- HTML编辑笔记4
1.CSS(层叠样式表) 2.CSS语法 选择器{ 属性名1:属性值1: 属性名2:属性值2: } 3.引用CSS的三种方式 第一种:行内样式 例:<a style="color:re ...
- Grafana的安裝(一)
Grafana的安裝 grafana是用于可视化大型测量数据的开源程序,他提供了强大和优雅的方式去创建.共享.浏览数据.dashboard中显示了你不同metric数据源中的数据 Granafa的安裝 ...
- angular4-注入服务
//配置已创建的服务:import { MemberService } from "./member.service";@NgModule({ // ... providers: ...
- Fedora的一些个人配置
0,老传统 yum install screenfetch 1,关闭蜂鸣器 edit /etc/bashrc setterm -blength 0#setterm -bfreq 10 #这个可以设置声 ...