附上一般讲得不错的博客 https://blog.csdn.net/lw277232240/article/details/73251092

https://www.cnblogs.com/collectionne/p/6847240.html

https://blog.csdn.net/zhn_666/article/details/77971619

然后附上模板题:              https://vjudge.net/problem/HihoCoder-1183

裸题,直接要你输出割点 和 割边.. 唯一坑点就是割边的输出..自己看题.

#include <set>
#include <cstdio>
#include <algorithm> using namespace std; struct Point {
int u;
int v;
Point () { }
Point (int uu, int vv) : u(uu), v(vv) { }
bool operator < (const Point &a) const {
if (u != a.u) return u < a.u;
return v < a.v;
}
}; struct Edge {
int lst;
int to;
}edge[];
int head[];
int qsz = ; inline void add(int u, int v) {
edge[qsz].lst = head[u];
edge[qsz].to = v;
head[u] = qsz++;
} int dfn[];
int low[];
//int pa[20500];
int dfn_num;
set<int> ans;
set<Point> ans_pt;
/*
void Tarjan(int u) {
int i, v, child = 0;
dfn[u] = low[u] = ++dfn_num;
for (i=head[u]; i; i=edge[i].lst) {
v = edge[i].to;
if (v == pa[u]) continue;
if (!dfn[v]) { // 树边, 父子边
pa[v] = u;
Tarjan(v);
child++;
low[u] = min(low[u], low[v]);
// case 1 u是根节点,同时只是有2颗子树---> 无向图 所以可能有多个根节点.
if (!pa[u] && child>=2) ans.insert(u) ; // 根节点是否有多颗子树.. 注意 这个是写在if (!vis[u])里面的.
// case 2 u是叶子节点, 割点条件是low[v]>=dfn[u]
if ( pa[u] && low[v] >= dfn[u]) ans.insert(u); // 说明v无法连接到u的祖先.
// 桥 的条件是: low[v] > dfn[u]
if (low[v] > dfn[u]) ans_pt.insert(Point(min(u, v), max(v, u))); // 说明v无法连接到u或者u的祖先.
} else {
low[u] = min(low[u], dfn[v]); // u v 为回边
}
}
}
*/
void Tarjan(int u, int fa) {
int i, v, child = ;
dfn[u] = low[u] = ++dfn_num;
for (i=head[u]; i; i=edge[i].lst) {
v = edge[i].to;
if (v == fa) continue;
if (!dfn[v]) { // 树边, 父子边
Tarjan(v, u);
child++;
low[u] = min(low[u], low[v]);
// case 1 u是根节点,同时只是有2颗子树---> 无向图 所以可能有多个根节点.
if (fa==u && child>=) ans.insert(u) ; // 根节点是否有多颗子树.. 注意 这个是写在if (!vis[u])里面的.
// case 2 u是叶子节点, 割点条件是low[v]>=dfn[u]
if (fa!=u && low[v] >= dfn[u]) ans.insert(u); // 说明v无法连接到u的祖先.
// 桥 的条件是: low[v] > dfn[u]
if (low[v] > dfn[u]) ans_pt.insert(Point(min(u, v), max(v, u))); // 说明v无法连接到u或者u的祖先.
} else {
low[u] = min(low[u], dfn[v]); // u v 为回边
}
}
} int main()
{
// freopen("E:\\input.txt", "r", stdin);
int n, m;
int u, v, i, j;
scanf("%d%d", &n, &m);
for (i=; i<=m; ++i) {
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
Tarjan(, ); if (ans.size()) {
bool flag = true; for (auto iter : ans) {
if (flag) {
printf("%d", iter);
flag = false;
} else printf(" %d", iter);
}
} else {
printf("Null");
}
printf("\n");
for (auto iter : ans_pt)
printf("%d %d\n", iter.u, iter.v); return ;
}

连通度 : 连通图的连通程度. 分为点连通 和 边连通.

割点:在连通图中,删除了连通图的某个点以及与这个点相连的边后,图不再连通。这样的点就是割点。
割边:在连通图中,删除了连通图的某条边后,图不再连通。这样的边被称为割边,也叫做桥。

DFS搜索树:用DFS对图进行遍历时,按照遍历次序的不同,我们可以得到一棵DFS搜索树。

树边:在搜索树中的蓝色线所示,可理解为在DFS过程中访问未访问节点时所经过的边,也称为父子边
回边:在搜索树中的橙色线所示,可理解为在DFS过程中遇到已访问节点时所经过的边,也称为返祖边、后向边

求割点 割边(桥)

注意 low[]和求连通分量的意义不同

求连通分量的low[]的意思是,节点u能访问的最小时间戳

求割点 桥 的low[]的意思是  顶点u及其子树中的点,通过非父子边(回边),能够回溯到的最早的点(dfn最小)的dfn值

void Tarjan(int u, int fa) {
int i, v, child = ;
dfn[u] = low[u] = ++dfn_num;
for (i=head[u]; i; i=edge[i].lst) {
v = edge[i].to;
if (v == fa) continue;
if (!dfn[v]) { // 树边, 父子边
Tarjan(v, u);
child++;
low[u] = min(low[u], low[v]);
// case 1 u是根节点,同时只是有2颗子树---> 无向图 所以可能有多个根节点.
if (fa==u && child>=) ans.insert(u) ; // 根节点是否有多颗子树.. 注意 这个是写在if (!vis[u])里面的.
// case 2 u是叶子节点, 割点条件是low[v]>=dfn[u]
if (fa!=u && low[v] >= dfn[u]) ans.insert(u); // 说明v无法连接到u的祖先.
// 桥 的条件是: low[v] > dfn[u]
if (low[v] > dfn[u]) ans_pt.insert(Point(u, v)); // 说明v无法连接到u或者u的祖先.
} else {
low[u] = min(low[u], dfn[v]); // u v 为回边
}
}
}

求割点 割边 Tarjan的更多相关文章

  1. tarjan求割点割边的思考

    这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...

  2. 无向连通图求割点(tarjan算法去掉改割点剩下的联通分量数目)

    poj2117 Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3603   Accepted: 12 ...

  3. UVA 315 求割点 模板 Tarjan

    D - D Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Pract ...

  4. poj_1144Network(tarjan求割点)

    poj_1144Network(tarjan求割点) 标签: tarjan 割点割边模板 题目链接 Network Time Limit: 1000MS Memory Limit: 10000K To ...

  5. tarjan 割点 割边

    by   GeneralLiu tarjan 求 割点 割边 无向图  的 割点 割边: 对于无向连通图来说, 如果删除   一个点以及与它相连的边   之后, 使得这个图不连通, 那么该点为割点 : ...

  6. poj1523 求割点 tarjan

    SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7678   Accepted: 3489 Description C ...

  7. [UVA315]Network(tarjan, 求割点)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  8. Tarjan求割点(割顶) 割边(桥)

    割点的定义: 感性理解,所谓割点就是在无向连通图中去掉这个点和所有和这个点有关的边之后,原先连通的块就会相互分离变成至少两个分离的连通块的点. 举个例子: 图中的4号点就是割点,因为去掉4号点和有关边 ...

  9. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

随机推荐

  1. Analytic Functions in Oracle

    Contents Overview and IntroductionHow Analytic Functions WorkThe SyntaxExamplesCalculate a running T ...

  2. 从线程模型的角度看Netty的高性能

    转载:Netty(二) 从线程模型的角度看 Netty 为什么是高性能的? 传统 IO 在 Netty 以及 NIO 出现之前,我们写 IO 应用其实用的都是用 java.io.* 下所提供的包. 比 ...

  3. Qt Widgets——工具栏和状态栏

    本文主要涉及QSizeGrip ,QStatusBar ,QToolBar QToolBar 工具栏默认位于菜单栏下方,其上添加一个个action按钮,用于执行动作 绝大多谢以前都涉及过,只列出 QT ...

  4. 小程序 wepy wx.createAnimation 向右滑动渐入渐出

    <style lang="less"> .animation { width: 100vw; height: 100vh; opacity: 0; background ...

  5. 使用Java实现面向对象编程

    使用Java实现面向对象编程 源码展示: package cdjj.s2t075.com; import java.util.Scanner; public class Door { /* * Doo ...

  6. ElasticSearch安装部署(Windows)

    测试版本:elasticsearch-5.1.1 1.解压elasticsearch-5.1.1.zip. 2.执行elasticsearch.bat启动服务,启动画面如下: 3.访问ElasticS ...

  7. 关于datetimepicker只显示年、月、日的设置

    如下是只显示月的sample code: <link rel="stylesheet" href="css/datetimepicker/bootstrap-dat ...

  8. NSIS笔记

    1.IfFileExists IfFileExists D:\SA\test\testdirectory\*.* 0 +1 判断testdirectory是否是一个目录,若是,则执行接下来的第一行代码 ...

  9. 高效方便的IO库: System.IO.Pipelines

    我们在编写网络程序的时候,经常会进行如下操作: 申请一个缓冲区 从数据源中读入数据至缓冲区 解析缓冲区的数据 重复第2步 表面上看来这是一个很常规而简单的操作,但实际使用过程中往往存在如下痛点: 数据 ...

  10. JDK(java se development kit)的构成

    1.javac(Java compiler)编译器 通过命令行输入javac命令调用Java编译器,编译Java文件的过程中,javac会检查源程序是否符合Java的语法,没有语法 问题就会将.jav ...